One-dimensional reaction-diffusion dynamics in spatially bounded domains

被引:2
|
作者
Sarnari, Francesco [1 ,2 ]
机构
[1] Univ Pisa, Italian Natl Res Council, Phys Dept, CNR, Pisa, Italy
[2] Univ Siena, Biophys Inst, Sch Informat Engn & Math Sci, Siena, Italy
关键词
FRONT PROPAGATION; PATTERN-FORMATION; TRAVELING PULSES; NEURAL-NETWORKS; MODEL; STABILITY; STATES; EXISTENCE; EQUATIONS; WAVES;
D O I
10.1016/j.chaos.2019.109490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the complex dynamics arising in a one-dimensional advection-reaction-diffusion system along with its bistable cubic variant. In both cases, we analyze the dynamics in a bounded domain, assuming, first, Robin, and then periodic boundaries. We study the stability of the solutions obtained and suggest eventual implications in the experimental study of chemical waves as well as in a simplified description of cardiac electric signal propagation. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Random walks, reaction-diffusion, and nonequilibrium dynamics of spin chains in one-dimensional random environments
    Fisher, DS
    Le Doussal, P
    Monthus, C
    PHYSICAL REVIEW LETTERS, 1998, 80 (16) : 3539 - 3542
  • [22] Concentration for one and two-species one-dimensional reaction-diffusion systems
    Simon, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23): : 6585 - 6603
  • [23] ASYMPTOTIC DYNAMICS OF NON-AUTONOMOUS FRACTIONAL REACTION-DIFFUSION EQUATIONS ON BOUNDED DOMAINS
    Li, Xin
    Shen, Wenxian
    Sun, Chunyou
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 105 - 139
  • [24] Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model
    Xu, Chuang
    Wei, Junjie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1961 - 1977
  • [25] Solution of a class of one-dimensional reaction-diffusion models in disordered media
    Mobilia, M
    Bares, PA
    PHYSICAL REVIEW B, 2001, 64 (06)
  • [26] Nonconcentration phenomenon for one-dimensional reaction-diffusion systems with mass dissipation
    Yang, Juan
    Kostianko, Anna
    Sun, Chunyou
    Tang, Bao Quoc
    Zelik, Sergey
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) : 4288 - 4306
  • [27] A proposal for the analytical solution of stationary one-dimensional reaction-diffusion equations
    Bellini, M
    Giovanbattista, N
    Deza, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (05): : 767 - 773
  • [28] Iterative analytic approximation to one-dimensional nonlinear reaction-diffusion equations
    Kaushik, Aditya
    Sharma, Manju
    Gupta, Aastha
    Choudhary, Monika
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) : 12152 - 12168
  • [29] Crossover properties of a one-dimensional reaction-diffusion process with a transport current
    Fortin, Jean-Yves
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [30] A modification of the Shishkin discretization mesh for one-dimensional reaction-diffusion problems
    Vulanovic, Relja
    Teofanov, Ljiljana
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 104 - 116