Li Ion Diffusivity and Rate Performance of the LiFePO4 Modified by Cr Doping

被引:31
|
作者
Park, Chang Kyoo [1 ,2 ]
Park, Sung Bin [1 ]
Shin, Ho Chul [3 ]
Cho, Won Il [2 ]
Jang, Ho [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Sci & Technol, Adv Battery Ctr, Seoul 136791, South Korea
[3] GS Caltex Corp, R&D Ctr, Energy Mat Lab, Taejon 305380, South Korea
来源
关键词
Lithium iron phosphate; Doping; Chemical diffusion coefficient; Cyclic voltammetry; Electrochemical impedance spectroscopy; PHOSPHO-OLIVINES; CATHODE MATERIAL; LITHIUM; FE;
D O I
10.5012/bkcs.2011.32.1.191
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study reports the root cause of the improved rate performance of LiFePO4 after Cr doping. By measuring the chemical diffusion coefficient of lithium (Du) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the correlation between the electrochemical performance of Li FePO4 and Li diffusion is acquired. The diffusion constants for LiFePO4/C and LiFe0.97Cr0.03PO4/C measured from CV are 2.48 x 10(-15) and 4.02 x 10(-15) cm(2) s(-1), respectively, indicating significant increases in diffusivity after the modification. The difference in diffusivity is also confirmed by EIS and the Du values obtained as a function of the lithium content in the cathode. These results suggest that Cr doping facilitates Li ion diffusion during the charge-discharge cycles. The low diffusivity of the LiFePO4/C leads to the considerable capacity decline at high discharge rates, while high diffusivity of the LiFe0.97Cr0.03PO4/C maintains the initial capacity, even at high C-rates.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 50 条
  • [21] Effects of acetonitrile on electrochemical performance of LiFePO4/Li
    Peng, Q.
    Zhang, Z. Y.
    Yang, L.
    Wang, X. L.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (04) : 339 - 344
  • [22] Effects of acetonitrile on electrochemical performance of LiFePO4/Li
    Q. Peng
    Z. Y. Zhang
    L. Yang
    X. L. Wang
    Russian Journal of Electrochemistry, 2015, 51 : 339 - 344
  • [23] Low temperature performance of LiFePO4 cathode material for Li-ion batteries
    Chang, Wonyoung
    Kim, Su-Jin
    Park, In-Tae
    Cho, Byung-Won
    Chung, Kyung Yoon
    Shin, Heon-Cheol
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 563 : 249 - 253
  • [24] Research progresses of MWCNTs modified LiFePO4 cathode material for Li-ion batteries
    Yang, Gai
    Cai, Fei-Peng
    Jiang, Bo
    Hu, Su-Qin
    Wang, Bo
    Wang, Jian-Mei
    Gongneng Cailiao/Journal of Functional Materials, 2012, 43 (SUPPL. 1): : 1 - 5
  • [25] Carbon nanotube-modified LiFePO4 for high rate lithium ion batteries
    Luo Wen-bin
    Wen Lei
    Luo Hong-ze
    Song Ren-sheng
    Zhai Yu-chun
    Liu Chang
    Li Feng
    NEW CARBON MATERIALS, 2014, 29 (04) : 287 - 294
  • [26] High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries
    Adepoju, Adewale A.
    Williams, Quinton L.
    CURRENT APPLIED PHYSICS, 2020, 20 (01) : 1 - 4
  • [27] Modeling study of Li ion diffusion and microstructure of LiFePO4
    Zhang, Peixin
    Zhang, Dongyun
    Yuan, Qiuhua
    Ren, Xiangzhong
    Golden, Teresa D.
    SOLID STATE SCIENCES, 2011, 13 (08) : 1510 - 1515
  • [28] Electrophoretic deposition of LiFePO4 for Li-ion batteries
    Michaud, X.
    Shi, K.
    Zhitomirsky, I
    MATERIALS LETTERS, 2019, 241 : 10 - 13
  • [29] Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries
    Thorat, Indrajeet V.
    Joshi, Tapesh
    Zaghib, Karim
    Harb, John N.
    Wheeler, Dean R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) : A1185 - A1193
  • [30] Porous supraparticles of LIFePO4 nanorods with carbon for high rate Li-ion batteries
    Yoo, Jong Won
    Zhang, Kan
    Patil, Virendra
    Lee, Jeong Taik
    Jung, Dae-Woong
    Pu, Lyong Sun
    Oh, Woong
    Yoon, Won-Sub
    Park, Jong Hyeok
    Yi, Gi-Ra
    MATERIALS EXPRESS, 2018, 8 (04) : 316 - 324