NUMERICAL SOLUTIONS FOR A TIMOSHENKO-TYPE SYSTEM WITH THERMOELASTICITY WITH SECOND SOUND

被引:2
|
作者
Hamouda, Makram [1 ]
Bchatnia, Ahmed [2 ]
Ayadi, Mohamed Ali [3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Preparatory Year & Supporting Studies, POB 1982, Dammam 34212, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, UR Anal Nonlineaire & Geometrie UR13ES32, Manar 2, Tunis 2092, Tunisia
[3] ESPRIT Sch Engn, UR Anal Nonlineaire & Geometrie UR13ES32, 1,2 Rue Andre Ampere, El Ghazala 2083, Tunisia
来源
关键词
asymptotic stability; finite difference methods; stability and convergence of numerical methods; thermoelasticity; Timoshenko system; Asymptotic behavior of solutions; GLOBAL EXISTENCE; STABILIZATION; DECAY;
D O I
10.3934/dcdss.2021001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider in this article a nonlinear vibrating Timoshenko system with thermoelasticity with second sound. We first recall the results obtained in [2] concerning the well-posedness, the regularity of the solutions and the asymptotic behavior of the associated energy. Then, we use a fourth-order finite difference scheme to compute the numerical solutions and we prove its convergence. The energy decay in several cases, depending on the stability number mu, are numerically and theoretically studied.
引用
收藏
页码:2975 / 2992
页数:18
相关论文
共 50 条
  • [21] Exponential stability for a Timoshenko-type system with history
    Ma, Zhiyong
    Zhang, Lingrui
    Yang, Xinguang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 299 - 312
  • [22] TIMOSHENKO-TYPE EQUATIONS
    CHARNYI, LI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1976, (01): : 83 - 86
  • [23] Exponential stability of Timoshenko system in thermoelasticity of second sound with a memory and distributed delay term
    Moumen, Abdelkader
    Ouchenane, Djamel
    Choucha, Abdelbaki
    Zennir, Khaled
    Zubair, Sulima A.
    OPEN MATHEMATICS, 2021, 19 (01): : 1636 - 1647
  • [24] A stability result of a Timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback
    Ouchenane, Djamel
    GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (04) : 475 - 489
  • [25] Stability and numerical results for a suspension bridge of Timoshenko type with second sound
    Aouragh, My Driss
    El Baz, Mustapha
    Segaoui, M'hamed
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [26] Uniform decay in a Timoshenko-type system with past history
    Messaoudi, Salim A.
    Said-Houari, Belkacem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 459 - 475
  • [27] NUMERICAL REALIZATION OF THE DUAL VARIATION PRINCIPLES IN THE TIMOSHENKO-TYPE SHELL THEORY
    GRIGORENKO, YM
    MUKHA, IS
    SAVULA, YG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1985, (08): : 23 - 28
  • [28] Asymptotic behavior of the Timoshenko-type system with nonlinear boundary control
    Ayadi, Mohamed Ali
    Bchatnia, Ahmed
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 171 - 182
  • [29] ON THE THEORY OF CURVILINEAR TIMOSHENKO-TYPE RODS
    BERDICHEVSKII, VL
    STAROSELSKII, LA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1983, 47 (06): : 809 - 817
  • [30] ON THE THEORY OF CURVILINEAR TIMOSHENKO-TYPE RODS.
    Berdichevskii, V.L.
    Starosel'skii, L.A.
    Journal of Applied Mathematics and Mechanics, 1983, 47 (06) : 809 - 817