Multi-strategy Jaya algorithm for industrial optimization tasks

被引:1
|
作者
Yu, Xiaobing [1 ]
Luo, Wenguan [1 ]
Rao, R. Venkata [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing, Peoples R China
[2] SV Natl Inst Technol, Dept Mech Engn, Surat, Gujarat, India
关键词
Jaya algorithm; multi-strategy; optimization; adaptive; DIFFERENTIAL EVOLUTION; PARAMETERS IDENTIFICATION; ENSEMBLE; DESIGN;
D O I
10.3233/JIFS-213471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Jaya, a simple heuristic algorithm, has shown attractive features, especially parameter-free. However, the simple structure of Jaya algorithm may result in poor performances, to boost the performance, a multi-strategy Jaya (MJaya) algorithm based on multi-population has been proposed in this paper. Three strategies correspond to three groups of solutions. The first strategy based on the first population is to introduce an adaptive weight parameter to the position-updating equation to improve the local search. The second strategy is based on rank-based mutation to enhance the global search. The third strategy is to exploit around the best solution to reinforce the local search. Three strategies cooperate well during the evolution process. The experimental results based on CEC 2014 have proven that the proposed MJaya is superior compared with Jaya and its latest variants. Then, the proposed MJaya algorithm is used to solve three industrial problems and the results have shown that the proposed MJaya algorithm can also solve complex industrial applications effectively.
引用
收藏
页码:4379 / 4393
页数:15
相关论文
共 50 条
  • [31] Multi-strategy adaptive cuckoo search algorithm for numerical optimization
    Cheng, Jiatang
    Xiong, Yan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2031 - 2055
  • [32] Multi-strategy serial cuckoo search algorithm for global optimization
    Peng, Hu
    Zeng, Zhaogan
    Deng, Changshou
    Wu, Zhijian
    KNOWLEDGE-BASED SYSTEMS, 2021, 214
  • [33] Improved Seagull Optimization Algorithm Based on Multi-Strategy Integration
    Shi, Haibin
    Li, Baoda
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2234 - 2239
  • [34] A multi-strategy enhanced salp swarm algorithm for global optimization
    Hongliang Zhang
    Zhennao Cai
    Xiaojia Ye
    Mingjing Wang
    Fangjun Kuang
    Huiling Chen
    Chengye Li
    Yuping Li
    Engineering with Computers, 2022, 38 : 1177 - 1203
  • [35] Optimization of WSN localization algorithm based on improved multi-strategy seagull algorithm
    Yu, Xiuwu
    Liu, Yinhao
    Liu, Yong
    TELECOMMUNICATION SYSTEMS, 2024, 86 (03) : 547 - 558
  • [36] Multi-strategy chimp optimization algorithm for global optimization and minimum spanning tree
    Nating Du
    Yongquan Zhou
    Qifang Luo
    Ming Jiang
    Wu Deng
    Soft Computing, 2024, 28 (3) : 2055 - 2082
  • [37] Multi-Strategy Grey Wolf Optimization Algorithm for Global Optimization and Engineering Applications
    Wang, Likai
    Zhang, Qingyang
    Yang, Shengxiang
    Dong, Yongquan
    JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2024, : 203 - 230
  • [38] A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems
    Li, Mingyuan
    Yu, Xiaobing
    Fu, Bingbing
    Wang, Xuming
    NEURAL COMPUTING & APPLICATIONS, 2023,
  • [39] A Multi-Strategy Improvement Secretary Bird Optimization Algorithm for Engineering Optimization Problems
    Qin, Song
    Liu, Junling
    Bai, Xiaobo
    Hu, Gang
    BIOMIMETICS, 2024, 9 (08)
  • [40] Multi-strategy arithmetic optimization algorithm for global optimization and uncertain motion tracking
    Gao, Zeng
    Zhuang, Yi
    Gu, Jingjing
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):