Commuting involution graphs for sporadic simple groups

被引:27
|
作者
Bates, C.
Bundy, D.
Hart, S.
Rowley, P.
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[2] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[3] Univ London Birkbeck Coll, Sch Econ Math & Stat, London WC1E 7HX, England
关键词
commuting involution graph; sporadic simple group;
D O I
10.1016/j.jalgebra.2007.04.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K <= G <= Aut(K), where K is one of the 26 sporadic finite simple groups, and let t is an element of G be an involution and X = t(G). The commuting involution graph C(G, X) has X as its vertex set with two distinct elements of X joined by an edge whenever they commute in G. For most of the sporadic simple groups, we compute the diameter of C(G, X) and give detailed information about the elements at a given distance from a fixed involution t. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:849 / 868
页数:20
相关论文
共 50 条
  • [31] Factorisations of sporadic simple groups
    Giudici, Michael
    [J]. JOURNAL OF ALGEBRA, 2006, 304 (01) : 311 - 323
  • [32] A CHARACTERIZATION OF THE SIMPLE SPORADIC GROUPS
    Asboei, A. K.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 200 - 204
  • [33] On the spread of the sporadic simple groups
    Ganief, S
    Moori, J
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (08) : 3239 - 3255
  • [34] The admissibility of sporadic simple groups
    Evans, Anthony B.
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (01) : 105 - 116
  • [35] Properties of Commuting Graphs over Semidihedral Groups
    Cheng, Tao
    Dehmer, Matthias
    Emmert-Streib, Frank
    Li, Yongtao
    Liu, Weijun
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 15
  • [36] Commuting graphs of groups and related numerical parameters
    Mahmoudifar, A.
    Moghaddamfar, A. R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 3159 - 3165
  • [37] NON-COMMUTING GRAPHS OF NILPOTENT GROUPS
    Abdollahi, Alireza
    Shahverdi, Hamid
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3944 - 3949
  • [38] A note on commuting graphs for general linear groups
    Nasiri, Maryam
    Jafari, Sayyed Heidar
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (06): : 1635 - 1640
  • [39] Groups with maximum vertex degree commuting graphs
    Sushil Bhunia
    G. Arunkumar
    [J]. Indian Journal of Pure and Applied Mathematics, 2024, 55 : 234 - 241
  • [40] Groups with maximum vertex degree commuting graphs
    Bhunia, Sushil
    Arunkumar, G.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 234 - 241