Q-log-concavity and log-convexity for q-analogue of polynomial coefficient

被引:0
|
作者
Ahmia, Moussa [1 ]
Belbachir, Hacene [2 ,3 ]
机构
[1] Univ Mohamed Seddik Ben Yahia City Ouled Aissa, Dept Math, Jijel 18000, Algeria
[2] Univ Sci & Technol Houari Boumed, Fac Math, Bab Ezzouar 16111, Algiers 16111, Algeria
[3] RECITS Lab, Algiers, Algeria
关键词
Polynomial coefficients; q-log-concavity; log-convexity; linear transformation; totally positive; SEQUENCES; CONVOLUTION; POSITIVITY; CONNECTION;
D O I
10.1080/09720502.2019.1645398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is twofold. First, we propose a q-analogue of polynomial coeffcients ((n)(k))(a), associated with the vector a = (a(0), ..., a(s)), which are defined as the k-th coefficients of (a(0) + a(1)x + ... + a(s)x(s))(n). Second, we prove that these coefficients are log-concave and their triangle is total positive of order two matrix (classical and analog versions). We also show that their transformation Sigma(sn)(k=0)((n)(k))(a) X-k (resp. Sigma(sn)(k=0)[(n)(k)](a) X-k) preserve the log-convexity property when the sequence (a(0), ..., a(s)) is log-concave.
引用
收藏
页码:637 / 654
页数:18
相关论文
共 50 条
  • [41] Seven (Lattice) Paths to Log-Convexity
    Doslic, Tomislav
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1373 - 1392
  • [42] Q-analogue of a kind of binomial coefficient identity
    Zhang, Zhizheng
    Jia, Zeya
    UTILITAS MATHEMATICA, 2014, 95 : 175 - 188
  • [43] On the q-log-convexity conjecture of Sun
    Dou, Donna Q. J.
    Ren, Anne X. Y.
    UTILITAS MATHEMATICA, 2015, 96 : 49 - 64
  • [44] The log-convexity of the poly-Cauchy numbers
    Komatsu, Takao
    Zhao, Feng-Zhen
    QUAESTIONES MATHEMATICAE, 2017, 40 (01) : 39 - 47
  • [45] The log-convexity of a class of linear recurrence sequences
    Liu, Rui-Li
    Zhao, Feng-Zhen
    ARS COMBINATORIA, 2020, 150 : 105 - 119
  • [46] The log-convexity of a class of linear recurrence sequences
    Liu, Rui-Li
    Zhao, Feng-Zhen
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 9 - 23
  • [47] THE LOG-CONVEXITY OF r-DERANGEMENT NUMBERS
    Zhao, Feng-Zhen
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (03) : 1031 - 1042
  • [48] On Log-Convexity for Differences of Mixed Symmetric Means
    Anwar, M.
    Pecaric, J.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 776 - 784
  • [49] Strict log-convexity of the minimum power vector
    Stanczak, Slawomir
    Boche, Holger
    Wiczanowski, Marcin
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2471 - +
  • [50] On log-convexity for differences of mixed symmetric means
    M. Anwar
    J. Pečarić
    Mathematical Notes, 2010, 88 : 776 - 784