High-efficiency ternary nonfullerene polymer solar cells with increased phase purity and reduced nonradiative energy loss

被引:28
|
作者
Zhang, Cai'e [1 ]
Jiang, Pengcheng [1 ]
Zhou, Xiaobo [3 ]
Liu, Haiqin [2 ]
Guo, Qingxin [1 ]
Xu, Xinjun [1 ]
Liu, Yahui [1 ]
Tang, Zheng [2 ]
Ma, Wei [3 ]
Bo, Zhishan [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Ctr Adv Low Dimens Mat, Shanghai 201620, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
ELECTRON-ACCEPTORS; PERFORMANCE; FULLERENE;
D O I
10.1039/c9ta12029g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we used a ternary blend strategy to improve the photovoltaic performance of organic solar cells (OSCs). PBDB-T:IDT-EDOT-based binary blend devices show a power conversion efficiency (PCE) of 9.93%, and the ternary devices with PC71BM as the third component exhibit a PCE of 12.07% with simultaneously enhanced V-oc, J(sc) and FF. The broadened absorption, optimized morphology and balanced charge carrier mobility of these devices are responsible for these improvements. The introduction of PC71BM can disperse the IDT-EDOT aggregates, enhance the phase purity, and increase the electroluminescence quantum efficiency (EQE(EL)). Furthermore, the performance of the ternary devices is not very sensitive to the weight ratio of the two acceptors. PCEs of over 11% are obtained even though the composition gradually varies from 1 : 1 : 0.2 to 1 : 0.4 : 0.8. Our results demonstrate that PC71BM is a highly promising second acceptor for the construction of high-efficiency ternary OSCs.
引用
收藏
页码:2123 / 2130
页数:8
相关论文
共 50 条
  • [21] Random Terpolymer Enabling High-Efficiency Organic Solar Cells Processed by Nonhalogenated Solvent with a Low Nonradiative Energy Loss
    Lu, Hao
    Wang, Hang
    Ran, Guangliu
    Li, Song
    Zhang, Jianqi
    Liu, Yahui
    Zhang, Wenkai
    Xu, Xinjun
    Bo, Zhishan
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (34)
  • [22] Ternary Strategy Enabling High-Performance Organic Solar Cells with Optimized Film Morphology and Reduced Nonradiative Energy Loss
    Li, Miao
    Zhou, Yuanyuan
    Zhang, Ming
    Liu, Yahui
    Ma, Zaifei
    Liu, Feng
    Qin, Ruiping
    Bo, Zhishan
    SOLAR RRL, 2021, 5 (12)
  • [23] High-Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration
    Zuo, Lijian
    Yu, Jiangsheng
    Shi, Xueliang
    Lin, Francis
    Tang, Weihua
    Jen, Alex K. -Y.
    ADVANCED MATERIALS, 2017, 29 (34)
  • [24] Fine-Tuning Alkyl Chains on Quinoxaline Nonfullerene Acceptors Enables High-Efficiency Ternary Organic Solar Cells with Optimizing Molecular Stacking and Reducing Energy Loss
    Guo, Yuntong
    Chen, Zhenyu
    Ge, Jinfeng
    Zhu, Jintao
    Zhang, Jinna
    Meng, Yuanyuan
    Ye, Qinrui
    Wang, Shijie
    Chen, Fei
    Ma, Wei
    Ge, Ziyi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (47)
  • [25] High-Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor
    Gao, Liang
    Zhang, Zhi-Guo
    Bin, Haijun
    Xue, Lingwei
    Yang, Yankang
    Wang, Cheng
    Liu, Feng
    Russell, Thomas P.
    Li, Yongfang
    ADVANCED MATERIALS, 2016, 28 (37) : 8288 - 8295
  • [26] On the Device Physics of High-Efficiency Ternary Solar Cells
    Upreti, Tanvi
    Wang, Yuming
    Gao, Feng
    Kemerink, Martijn
    SOLAR RRL, 2022, 6 (11)
  • [27] High-Efficiency Organic Solar Cells with Reduced Nonradiative Voltage Loss Enabled by a Highly Emissive Narrow Bandgap Fused Ring Acceptor
    Lu, Hao
    Liu, Wenxu
    Jin, Hui
    Huang, Hao
    Tang, Zheng
    Bo, Zhishan
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
  • [28] A Large-Bandgap Guest Material Enabling Improved Efficiency and Reduced Energy Loss for Ternary Polymer Solar Cells
    Yang, Hang
    Dong, Yingying
    Fan, Hongyu
    Wu, Yue
    Cui, Chaohua
    Li, Yongfang
    SOLAR RRL, 2021, 5 (05)
  • [29] Ternary Polymer Solar Cells with High Efficiency of 14.24% by Integrating Two Well-Complementary Nonfullerene Acceptors
    Jiang, Huanxiang
    Li, Xiaoming
    Wang, Jianing
    Qiao, Shanlin
    Zhang, Yong
    Zheng, Nan
    Chen, Weichao
    Li, Yonghai
    Yang, Renqiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (34)
  • [30] Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor
    Cai, Guilong
    Li, Yuhao
    Zhou, Jiadong
    Xue, Peiyao
    Liu, Kuan
    Wang, Jiayu
    Xie, Zengqi
    Li, Gang
    Zhan, Xiaowei
    Lu, Xinhui
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (45) : 50660 - 50667