Box dimension of α-fractal function with variable scaling factors in subintervals

被引:34
|
作者
Akhtar, Md Nasim [1 ]
Prasad, M. Guru Prem [1 ]
Navascures, M. A. [2 ]
机构
[1] IIT Guwahati, Dept Math, Gauhati 781039, India
[2] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza, Spain
关键词
Fractal interpolation functions; alpha-Fractal interpolation functions; Variable scaling factors; Box-counting dimensions; INTERPOLATION SURFACES;
D O I
10.1016/j.chaos.2017.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The box dimension of the graph of non-affine alpha-fractal interpolation function f(alpha) with variable scaling factors is estimated in the interval [0, 1]. Due to the non- affinity of f(alpha), the behavior of the graph is nonuniform in the subintervals. An attempt is made to estimate the box dimension of the graph of f(alpha) in the subintervals as well and it is compared with the box dimension of f(alpha) on the whole interval. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:440 / 449
页数:10
相关论文
共 50 条
  • [21] Nonlinear fractal interpolation curves with function vertical scaling factors
    JinMyong Kim
    HyonJin Kim
    HakMyong Mun
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 483 - 499
  • [22] Minimal box size for fractal dimension estimation
    Rosenberg, E.
    COMMUNITY ECOLOGY, 2016, 17 (01) : 24 - 27
  • [23] BOX DIMENSION OF A NONLINEAR FRACTAL INTERPOLATION CURVE
    Ri, Song-Il
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (03)
  • [24] Minimal box size for fractal dimension estimation
    E. Rosenberg
    Community Ecology, 2016, 17 : 24 - 27
  • [25] Box dimension of fractal attractors and their numerical computation
    Freiberg, Uta
    Kohl, Stefan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [26] The generalization of lower box dimension in fractal theory
    Tao, A.-B.
    Dai, M.-F.
    2001, East China Shipbuilding Institute (15):
  • [27] Fractal Analysis of Proteins Based on Box Dimension
    Peng Xin
    Zhang Yuwei
    Qi Wei
    Su Rongxin
    Wu Shaomin
    He Zhimin
    ACTA CHIMICA SINICA, 2010, 68 (11) : 1143 - 1147
  • [28] BOX DIMENSION OF BILINEAR FRACTAL INTERPOLATION SURFACES
    Kong, Qing-Ge
    Ruan, Huo-Jun
    Zhang, Sheng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 113 - 121
  • [29] Fractal dimension of α-fractal function on the Sierpinski Gasket
    Agrawal, Vishal
    Som, Tanmoy
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3781 - 3787
  • [30] Function norms and fractal dimension
    Tricot, C
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) : 189 - 212