Top-k Pattern Matching Using an Information-Theoretic Criterion over Probabilistic Data Streams

被引:2
|
作者
Sugiura, Kento [1 ]
Ishikawa, Yoshiharu [2 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Nagoya, Aichi, Japan
[2] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
来源
基金
日本科学技术振兴机构;
关键词
Complex event processing; Probabilistic data streams; Pattern matching; Regular expressions; Information-theoretic criterion; COMPLEX EVENT DETECTION; EFFICIENT;
D O I
10.1007/978-3-319-63579-8_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the development of data mining technologies for sensor data streams, more sophisticated methods for complex event processing are demanded. In the case of event recognition, since event recognition results may contain errors, we need to deal with the uncertainty of events. We therefore consider probabilistic event data streams with occurrence probabilities of events, and develop a pattern matching method based on regular expressions. In this paper, we first analyze the semantics of pattern matching over non-probabilistic data streams, and then propose the problem of top-k pattern matching over probabilistic data streams. We introduce the use of an information-theoretic criterion to select appropriate matches as the result of pattern matching. Then, we present an efficient algorithm to detect top-k matches, and evaluate the effectiveness of our approach using real and synthetic datasets.
引用
收藏
页码:511 / 526
页数:16
相关论文
共 50 条
  • [21] Continuous Monitoring of Top-k Dominating Queries over Uncertain Data Streams
    Li, Guohui
    Luo, Changyin
    Li, Jianjun
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2014, PT I, 2014, 8786 : 244 - 255
  • [22] Mining top-K significant itemsets in landmark windows over data streams
    Yang, Bei
    Huang, Houkuan
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2010, 47 (03): : 463 - 473
  • [23] Mining top-k frequent patterns over data streams sliding window
    Hui Chen
    Journal of Intelligent Information Systems, 2014, 42 : 111 - 131
  • [24] Information-Theoretic Joint Probabilistic Data Association Filter
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (03) : 1262 - 1269
  • [25] Approximating Diversified Top-k Graph Pattern Matching
    Wang, Xin
    Zhan, Huayi
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2018, PT I, 2018, 11029 : 407 - 423
  • [26] Fast approximation of the top-k items in data streams using FPGAs
    Ebrahim, Ali
    Khalifat, Jalal
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2023, 17 (02): : 60 - 73
  • [27] Probabilistic Top-k Dominating Query Monitoring Over Multiple Uncertain IoT Data Streams in Edge Computing Environments
    Lai, Chuan-Chi
    Wang, Tien-Chun
    Liu, Chuan-Ming
    Wang, Li-Chun
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (05): : 8563 - 8576
  • [28] Matching Top-k Answers of Twig Patterns in Probabilistic XML
    Ning, Bo
    Liu, Chengfei
    Yu, Jeffrey Xu
    Wang, Guoren
    Li, Jianxin
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT I, PROCEEDINGS, 2010, 5981 : 125 - +
  • [29] Efficient processing of top-k twig queries over probabilistic XML data
    Bo Ning
    Chengfei Liu
    Jeffrey Xu Yu
    World Wide Web, 2013, 16 : 299 - 323
  • [30] Efficient processing of top-k twig queries over probabilistic XML data
    Ning, Bo
    Liu, Chengfei
    Yu, Jeffrey Xu
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2013, 16 (03): : 299 - 323