Top-k Pattern Matching Using an Information-Theoretic Criterion over Probabilistic Data Streams

被引:2
|
作者
Sugiura, Kento [1 ]
Ishikawa, Yoshiharu [2 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Nagoya, Aichi, Japan
[2] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
来源
基金
日本科学技术振兴机构;
关键词
Complex event processing; Probabilistic data streams; Pattern matching; Regular expressions; Information-theoretic criterion; COMPLEX EVENT DETECTION; EFFICIENT;
D O I
10.1007/978-3-319-63579-8_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the development of data mining technologies for sensor data streams, more sophisticated methods for complex event processing are demanded. In the case of event recognition, since event recognition results may contain errors, we need to deal with the uncertainty of events. We therefore consider probabilistic event data streams with occurrence probabilities of events, and develop a pattern matching method based on regular expressions. In this paper, we first analyze the semantics of pattern matching over non-probabilistic data streams, and then propose the problem of top-k pattern matching over probabilistic data streams. We introduce the use of an information-theoretic criterion to select appropriate matches as the result of pattern matching. Then, we present an efficient algorithm to detect top-k matches, and evaluate the effectiveness of our approach using real and synthetic datasets.
引用
收藏
页码:511 / 526
页数:16
相关论文
共 50 条
  • [1] Top-K Ranking: An Information-theoretic Perspective
    Chen, Yuxin
    Suh, Changho
    2015 IEEE INFORMATION THEORY WORKSHOP - FALL (ITW), 2015, : 212 - 213
  • [2] Top-k Graph Pattern Matching over Large Graphs
    Cheng, Jiefeng
    Zeng, Xianggang
    Yu, Jeffrey Xu
    2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 1033 - 1044
  • [3] Upsortable: Programming Top-K Queries Over Data Streams
    Subercaze, Julien
    Gravier, Christophe
    Gillani, Syed
    Kammoun, Abderrahmen
    Laforest, Frederique
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (12): : 1873 - 1876
  • [4] Top-k Keyword Search over Probabilistic XML Data
    Li, Jianxin
    Liu, Chengfei
    Zhou, Rui
    Wang, Wei
    IEEE 27TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2011), 2011, : 673 - 684
  • [5] Grouping Methods for Pattern Matching over Probabilistic Data Streams
    Sugiura, Kento
    Ishikawa, Yoshiharu
    Sasaki, Yuya
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (04): : 718 - 729
  • [6] Continuously monitoring top-k uncertain data streams: a probabilistic threshold method
    Hua, Ming
    Pei, Jian
    DISTRIBUTED AND PARALLEL DATABASES, 2009, 26 (01) : 29 - 65
  • [7] Continuously monitoring top-k uncertain data streams: a probabilistic threshold method
    Ming Hua
    Jian Pei
    Distributed and Parallel Databases, 2009, 26 : 29 - 65
  • [8] Continuous Top-k Dominating Query of Incomplete Data over Data Streams
    Santoso, Bagus Jati
    Permadi, Vynska Amalia
    Ahmad, Tohari
    Ijtihadie, Royyana Muslim
    Sektiaji, Bayu
    PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 21 - 26
  • [9] Sliding Window Top-K Monitoring over Distributed Data Streams
    Lv, Zhijin
    Chen, Ben
    Yu, Xiaohui
    WEB AND BIG DATA, APWEB-WAIM 2017, PT I, 2017, 10366 : 527 - 540
  • [10] Mining top-k high utility patterns over data streams
    Zihayat, Morteza
    An, Aijun
    INFORMATION SCIENCES, 2014, 285 : 138 - 161