ON A CLASS OF ELLIPTIC SYSTEM OF SCHRODINGER-POISSON TYPE

被引:0
|
作者
Ferreira, Lucas C. F. [1 ]
Medeiros, Everaldo S. [2 ]
Montenegro, Marcelo [1 ]
机构
[1] Univ Estadual Campinas, IMECC Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger equations; existence; symmetry; positivity; Bessel potential; KLEIN-GORDON-MAXWELL; MULTIPLE SOLITARY WAVES; GROUND-STATE SOLUTIONS; THOMAS-FERMI; EQUATIONS; MOLECULES; ATOMS; NONEXISTENCE; EXISTENCE; HARTREE;
D O I
10.1017/S1446788714000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrodinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.
引用
收藏
页码:301 / 314
页数:14
相关论文
共 50 条
  • [31] POSITIVE SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON SYSTEM
    Wang, Chunhua
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5461 - 5504
  • [32] Schrodinger-Poisson system with potential of critical growth
    Hassani, Abdessamad
    Iskafi, Khalid
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (04)
  • [33] On a Schrodinger-Poisson system with singularity and critical nonlinearities
    Cai, Zhipeng
    Lei, Chunyu
    Chu, Changmu
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [34] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [35] Note on a Schrodinger-Poisson system in a bounded domain
    Pisani, Lorenzo
    Siciliano, Gaetano
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 521 - 528
  • [36] Spectral Element Method for the Schrodinger-Poisson System
    Cheng, Candong
    Liu, Qing Huo
    Lee, Joon-Ho
    Massoud, Hisham Z.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2004, 3 (3-4) : 417 - 421
  • [37] On a fractional Schrodinger-Poisson system with strong singularity
    Yu, Shengbin
    Chen, Jianqing
    OPEN MATHEMATICS, 2021, 19 (01): : 1538 - 1553
  • [38] Energy formulae for fractional Schrodinger-Poisson system
    Xiao, Jie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 331 : 50 - 69
  • [39] On A Nonlocal Schrodinger-Poisson System With Critical Exponent
    Massar, Mohammed
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 44 - 52
  • [40] On the Schrodinger-Poisson system with (p, q)-Laplacian
    Song, Yueqiang
    Huo, Yuanyuan
    Repovs, Dusan D.
    APPLIED MATHEMATICS LETTERS, 2023, 141