ON A CLASS OF ELLIPTIC SYSTEM OF SCHRODINGER-POISSON TYPE

被引:0
|
作者
Ferreira, Lucas C. F. [1 ]
Medeiros, Everaldo S. [2 ]
Montenegro, Marcelo [1 ]
机构
[1] Univ Estadual Campinas, IMECC Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger equations; existence; symmetry; positivity; Bessel potential; KLEIN-GORDON-MAXWELL; MULTIPLE SOLITARY WAVES; GROUND-STATE SOLUTIONS; THOMAS-FERMI; EQUATIONS; MOLECULES; ATOMS; NONEXISTENCE; EXISTENCE; HARTREE;
D O I
10.1017/S1446788714000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrodinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.
引用
收藏
页码:301 / 314
页数:14
相关论文
共 50 条
  • [1] Multiple Solutions for a Class of Fractional Schrodinger-Poisson System
    Chen, Lizhen
    Li, Anran
    Wei, Chongqing
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [2] Gevrey class regularity for a dissipative Schrodinger-Poisson system
    Hafner, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 829 - 832
  • [3] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197
  • [4] On the nonlocal Schrodinger-poisson type system in the Heisenberg group
    Liu, Zeyi
    Zhao, Min
    Zhang, Deli
    Liang, Sihua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) : 1558 - 1572
  • [5] The quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [6] THE SCHRODINGER-POISSON SYSTEM ON THE SPHERE
    Gerard, Patrick
    Mehats, Florian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1232 - 1268
  • [7] On a quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [8] Multiple solutions for a class of Schrodinger-Poisson system with indefinite nonlinearity
    Shen, Zupei
    Han, Zhiqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (02) : 839 - 854
  • [9] GENERALIZED SCHRODINGER-POISSON TYPE SYSTEMS
    Azzollini, Antonio
    d'Avenia, Pietro
    Luisi, Valeria
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) : 867 - 879
  • [10] Multiplicity of concentrating solutions for a class of magnetic Schrodinger-Poisson type equation
    Liu, Yueli
    Li, Xu
    Ji, Chao
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 131 - 151