On error distance of Reed-Solomon codes

被引:26
|
作者
Li YuJuan [1 ]
Wan DaQing [2 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 11期
关键词
Reed-Solomon code; error distance; deep hole; character sum;
D O I
10.1007/s11425-008-0066-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complexity of decoding the standard Reed-Solomon code is a well known open problem in coding theory. The main problem is to compute the error distance of a received word. Using the Weil bound for character sum estimate, we show that the error distance can be determined precisely when the degree of the received word is small. As an application of our method, we give a significant improvement of the recent bound of Cheng-Murray on non-existence of deep holes (words with maximal error distance).
引用
下载
收藏
页码:1982 / 1988
页数:7
相关论文
共 50 条
  • [41] Reed-Solomon error correction
    Lyppens, H
    DR DOBBS JOURNAL, 1997, 22 (01): : 30 - +
  • [42] Graph codes with Reed-Solomon component codes
    Hoholdt, Tom
    Justesen, Jorn
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2022 - +
  • [43] On the concatenation of turbo codes and Reed-Solomon codes
    Zhou, GC
    Lin, TS
    Wang, WZ
    Lindsey, WC
    Lai, D
    Chen, E
    Santoru, J
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2134 - 2138
  • [44] MATRIX FORMALISM OF THE REED-SOLOMON CODES
    Marov, A., V
    Uteshev, A. Yu
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (04): : 4 - 17
  • [45] Proximity Gaps for Reed-Solomon Codes
    Ben-Sasson, Eli
    Carmon, Dan
    Ishai, Yuval
    Kopparty, Swastik
    Saraf, Shubhangi
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 900 - 909
  • [46] Efficient decoding of Reed-Solomon codes beyond half the minimum distance
    Roth, RH
    Ruckenstein, G
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 56 - 56
  • [47] Efficient decoding of Reed-Solomon codes beyond half the minimum distance
    Roth, RM
    Ruckenstein, G
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) : 246 - 257
  • [48] Efficient Generalized Minimum-distance Decoders of Reed-Solomon Codes
    Zhu, Jiangli
    Zhang, Xinmiao
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2012, 66 (03): : 245 - 257
  • [49] Efficient Generalized Minimum-distance Decoders of Reed-Solomon Codes
    Jiangli Zhu
    Xinmiao Zhang
    Journal of Signal Processing Systems, 2012, 66 : 245 - 257
  • [50] On the NP-Hardness of Bounded Distance Decoding of Reed-Solomon Codes
    Gandikota, Venkata
    Ghazi, Badih
    Grigorescu, Elena
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2904 - 2908