Trace inequalities of the Sobolev type and nonlinear Dirichlet problems

被引:2
|
作者
Hara, Takanobu [1 ]
机构
[1] Grad Sch Informat Sci & Technol, Kita 14,Nishi 9,Kita ku, Sapporo, Hokkaido 0600814, Japan
关键词
BOUNDARY-VALUE PROBLEM; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; ENERGY SOLUTIONS; EXISTENCE; UNIQUENESS; SPACES; CONTINUITY; FINITE; HARDY;
D O I
10.1007/s00526-022-02339-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the solvability of nonlinear Dirichlet problems of the type -Delta(p,w)u = sigma in Omega; u = 0 on a partial derivative Omega, where Omega is a bounded domain in R-n, Delta(p,w) is a weighted (p, w)-Laplacian and sigma is a nonnegative locally finite Radon measure on Omega. We do not assume the finiteness of sigma (Omega). We revisit this problem from a potential theoretic perspective and provide criteria for the existence of solutions by L-p (w) - L-q (sigma) trace inequalities or capacitary conditions. Additionally, we apply the method to the singular elliptic problem -Delta(p,w)u = sigma u(-gamma) in Omega; u = 0 on partial derivative Omega and derive connection with the trace inequalities.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Dirichlet conditions in Poincaré–Sobolev inequalities: the sub-homogeneous case
    Davide Zucco
    [J]. Calculus of Variations and Partial Differential Equations, 2019, 58
  • [42] Sobolev trace-type inequalities via time-space fractional heat equations
    Tang, Yongrui
    Li, Pengtao
    Hu, Rui
    Zhai, Zhichun
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [43] Sobolev–Orlicz inequalities, ultracontractivity and spectra of time changed Dirichlet forms
    Ali Ben Amor
    [J]. Mathematische Zeitschrift, 2007, 255 : 627 - 647
  • [44] On Lyapunov-Type Inequalities for Nonlinear Hamiltonian-Type Problems
    Aktas, Mustafa Fahri
    [J]. FILOMAT, 2022, 36 (10) : 3423 - 3432
  • [45] Trace inequalities for operators associated to regular Dirichlet forms
    Ben Amor, A
    [J]. FORUM MATHEMATICUM, 2004, 16 (03) : 417 - 429
  • [46] Fractional Sobolev inequalities associated with singular problems
    Ercole, G.
    Pereira, G. A.
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1666 - 1685
  • [47] NONLINEAR DIRICHLET PROBLEMS IN ANNULI
    BANDLE, C
    PELETIER, LA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (05): : 181 - 184
  • [48] INSTANTANEOUS BLOW-UP FOR EVOLUTION INEQUALITIES OF SOBOLEV TYPE WITH NONLINEAR CONVOLUTION TERMS
    Alazman, Ibtehal
    Jleli, Mohamed
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 1996 - 2016
  • [49] Harnack Type Inequalities and Multiple Solutions in Cones of Nonlinear Problems
    Herlea, Diana-Raluca
    O'Regan, Donal
    Precup, Radu
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (02): : 151 - 170
  • [50] Best constant in Sobolev trace inequalities on the half-space
    Nazaret, Bruno
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (10) : 1977 - 1985