Parametric analysis on the low temperature wet air waste heat recovery through an organic Rankine cycle

被引:1
|
作者
Yue, Chen [1 ]
Tong, Le [1 ]
Zhang, Shizhong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
关键词
FLUE-GAS; SOLAR DRYER; INTEGRATION; KINETICS;
D O I
10.1007/s00231-020-02862-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
Removing moisture in the wet farm products through the open air ventilation is a traditional postharvest treatment method. However, its overall energy consumption is high and the drying time is long. Here, a combined system is proposed through integrating a bottom organic Rankine cycle (ORC) to a top closed farm products air drying cycle to save energy and decreasing the drying time. Based on a steady state thermodynamic model without any losses, a theoretical work on thermal performance the proposed system has been conducted. The key operation parameters and suitable operation conditions for both the prominent energy saving ratio and high moisture extraction characteristics have been analyzed. The calculation results showed both the prominent energy saving and high moisture extraction performances can be achieved at the low ORC evaporating pressure condition, but the optimal energy saving performance and the moisture extraction performance could not be achieved simultaneously. Increasing dew point temperature of the humid air leaving the drying chamber improves both the energy saving and moisture extraction performances of the drying system significantly. Under the working conditions in this research, with the dew point temperature value of the humid air leaving the drying chamber over 323 K, the optimal energy saving performance is achieved at a fixed low ORC evaporation pressure. But, the prominent energy saving and high moisture extraction performances could not be accomplished simultaneously, with the dew point temperature value of the humid air leaving the drying chamber lower than 323 K.
引用
收藏
页码:2333 / 2343
页数:11
相关论文
共 50 条
  • [21] Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery
    Wei, Donghong
    Lu, Xuesheng
    Lu, Zhen
    Gu, Jianming
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) : 1113 - 1119
  • [22] Energy, exergy, economic performance evaluation and parametric optimization of organic Rankine cycle for low-temperature flue gas waste heat recovery
    Feng, Jun-sheng
    Wu, Hao
    Cheng, Xin-ni
    Zhao, Liang
    Dong, Hui
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2025,
  • [23] Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle
    Campana, Claudio
    Cioccolanti, Luca
    Renzi, Massimiliano
    Caresana, Flavio
    ENERGY, 2019, 187
  • [24] Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle
    Srinivasan, Kalyan K.
    Mago, Pedro J.
    Krishnan, Sundar R.
    ENERGY, 2010, 35 (06) : 2387 - 2399
  • [25] Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery
    Long, R.
    Bao, Y. J.
    Huang, X. M.
    Liu, W.
    ENERGY, 2014, 73 : 475 - 483
  • [26] Optimisation of organic Rankine cycle driven by waste heat recovery
    Tiwari D.
    International Journal of Ambient Energy, 2023, 44 (01) : 1690 - 1702
  • [27] Compact Modelling of Organic Rankine Cycle for Waste Heat Recovery
    Liu, Kailong
    Li, Kang
    Zhang, Jianhua
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 1263 - 1268
  • [28] Waste Heat Recovery with Organic Rankine Cycle in the Petroleum Industry
    Varga, Zoltan
    Rabi, Istvan
    Farkas, Csaba
    PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 301 - 306
  • [29] ORGANIC RANKINE CYCLE FOR WASTE HEAT RECOVERY IN A HYBRID VEHICLE
    Hussain, Quazi E.
    Brigham, David R.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, DETC 2010, VOL 4, 2010, : 249 - 258
  • [30] A recent review of waste heat recovery by Organic Rankine Cycle
    Mahmoudi, A.
    Fazli, M.
    Morad, M. R.
    APPLIED THERMAL ENGINEERING, 2018, 143 : 660 - 675