Positivity-preserving third order DG schemes for Poisson-Nernst-Planck equations

被引:4
|
作者
Liu, Hailiang [1 ]
Wang, Zhongming [2 ]
Yin, Peimeng [3 ]
Yu, Hui [4 ,5 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[5] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
基金
美国国家科学基金会;
关键词
Poisson-Nernst-Planck system; Positivity; Direct discontinuous Galerkin methods; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; FREE-ENERGY; MOLECULAR SOLVATION; PARABOLIC EQUATIONS; DISCRETIZATION; ION;
D O I
10.1016/j.jcp.2021.110777
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson-Nernst-Planck (PNP) equations, which have found much use in diverse applications. Our DG method with Euler forward time discretization is shown to preserve the positivity of cell averages at all time steps. The positivity of numerical solutions is then restored by a scaling limiter in reference to positive weighted cell averages. The method is also shown to preserve steady states. Numerical examples are presented to demonstrate the third order accuracy and illustrate the positivity-preserving property in both one and two dimensions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [22] Unsteady analytical solutions to the Poisson-Nernst-Planck equations
    Schoenke, Johannes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (45)
  • [23] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [24] Exact solution of the Poisson-Nernst-Planck equations in the linear regime
    Golovnev, A.
    Trimper, S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (11):
  • [25] A dynamic mass transport method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [26] A WASSERSTEIN GRADIENT FLOW APPROACH TO POISSON-NERNST-PLANCK EQUATIONS
    Kinderlehrer, David
    Monsaingeon, Leonard
    Xu, Xiang
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 137 - 164
  • [27] Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: Application to slit-shaped nanopore conductance
    Ding, Jie
    Wang, Zhongming
    Zhou, Shenggao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [28] An energy preserving finite difference scheme for the Poisson-Nernst-Planck system
    He, Dongdong
    Pan, Kejia
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 287 : 214 - 223
  • [29] Positivity-preserving DG and central DG methods for ideal MHD equations
    Cheng, Yue
    Li, Fengyan
    Qiu, Jianxian
    Xu, Liwei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 : 255 - 280
  • [30] Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations
    Yang, Huaijun
    Li, Meng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)