Positivity-preserving third order DG schemes for Poisson-Nernst-Planck equations

被引:4
|
作者
Liu, Hailiang [1 ]
Wang, Zhongming [2 ]
Yin, Peimeng [3 ]
Yu, Hui [4 ,5 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[5] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
基金
美国国家科学基金会;
关键词
Poisson-Nernst-Planck system; Positivity; Direct discontinuous Galerkin methods; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; FREE-ENERGY; MOLECULAR SOLVATION; PARABOLIC EQUATIONS; DISCRETIZATION; ION;
D O I
10.1016/j.jcp.2021.110777
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson-Nernst-Planck (PNP) equations, which have found much use in diverse applications. Our DG method with Euler forward time discretization is shown to preserve the positivity of cell averages at all time steps. The positivity of numerical solutions is then restored by a scaling limiter in reference to positive weighted cell averages. The method is also shown to preserve steady states. Numerical examples are presented to demonstrate the third order accuracy and illustrate the positivity-preserving property in both one and two dimensions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Unconditional Positivity-Preserving and Energy Stable Schemes for a Reduced Poisson-Nernst-Planck System
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (05) : 1505 - 1529
  • [2] Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations
    Shen, Jie
    Xu, Jie
    [J]. NUMERISCHE MATHEMATIK, 2021, 148 (03) : 671 - 697
  • [3] A POSITIVITY-PRESERVING, ENERGY STABLE AND CONVERGENT NUMERICAL SCHEME FOR THE POISSON-NERNST-PLANCK SYSTEM
    Liu, Chun
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    Zhou, Shenggao
    [J]. MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2071 - 2106
  • [4] A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations
    Hu, Jingwei
    Huang, Xiaodong
    [J]. NUMERISCHE MATHEMATIK, 2020, 145 (01) : 77 - 115
  • [5] A positivity-preserving and free energy dissipative hybrid scheme for the Poisson-Nernst-Planck equations on polygonal and polyhedral meshes
    Su, Shuai
    Tang, Huazhong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 : 33 - 48
  • [6] Unconditionally positivity preserving and energy dissipative schemes for Poisson–Nernst–Planck equations
    Jie Shen
    Jie Xu
    [J]. Numerische Mathematik, 2021, 148 : 671 - 697
  • [7] A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck (PNP) system
    Dong, Lixiu
    He, Dongdong
    Qin, Yuzhe
    Zhang, Zhengru
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [8] An energy-preserving discretization for the Poisson-Nernst-Planck equations
    Flavell, Allen
    Kabre, Julienne
    Li, Xiaofan
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (02) : 431 - 441
  • [9] POSITIVITY PRESERVING AND MASS CONSERVATIVE PROJECTION METHOD FOR THE POISSON-NERNST-PLANCK EQUATION
    Tong, Fenghua
    Cai, Yongyong
    [J]. SIAM Journal on Numerical Analysis, 2024, 62 (04) : 2004 - 2024
  • [10] Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson-Nernst-Planck System
    Ling, Weiwei
    Liu, Benchao
    Guo, Qian
    [J]. SYMMETRY-BASEL, 2022, 14 (08):