Lemniscates and K-spectral sets

被引:5
|
作者
Nevanlinna, Olavi [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, FI-00076 Espoo, Aalto, Finland
关键词
von Neumann spectral sets; K-spectral sets; Lemniscates; Multicentric representation; Jacobi series; Riesz spectral projections; HILBERT-SPACE; OPERATORS;
D O I
10.1016/j.jfa.2011.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how multicentric representation of functions provides a simple way to generalize the von Neumann result that the unit disc is a spectral set for contractions in Hilbert spaces. In particular the sets need not be connected and the results can be applied to bounding Riesz spectral projections. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1728 / 1741
页数:14
相关论文
共 50 条
  • [21] Spectral sets II
    Koliha J.J.
    Poon P.W.
    Rendiconti del Circolo Matematico di Palermo, 1998, 47 (2) : 293 - 310
  • [22] On spectral sets of integers
    Dutkay, Dorin Ervin
    Kraus, Isabelle
    FRAMES AND HARMONIC ANALYSIS, 2018, 706 : 215 - 234
  • [23] SPECTRAL DECOMPOSITION OF k-TYPE NONWANDERING SETS FOR Z2-ACTIONS
    Kim, Daejung
    Lee, Seunghee
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 387 - 400
  • [24] Tiling sets and spectral sets over finite fields
    Aten, C.
    Ayachi, B.
    Bau, E.
    FitzPatrick, D.
    Iosevich, A.
    Liu, H.
    Lott, A.
    MacKinnon, I.
    Maimon, S.
    Nan, S.
    Pakianathan, J.
    Petridis, G.
    Mena, C. Rojas
    Sheikh, A.
    Tribone, T.
    Weill, J.
    Yu, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2547 - 2577
  • [25] K-sets and k-swaps algorithms for clustering sets
    Rezaei, Mohammad
    Franti, Pasi
    PATTERN RECOGNITION, 2023, 139
  • [26] OPERATORS WITH THIN SPECTRAL SETS
    HIRSCHFELD, RA
    MATHEMATICA SCANDINAVICA, 1976, 39 (02) : 367 - 370
  • [27] SPECTRAL GEOMETRY OF SEMIALGEBRAIC SETS
    GROMOV, M
    ANNALES DE L INSTITUT FOURIER, 1992, 42 (1-2) : 249 - 274
  • [28] SPECTRAL SETS AS BANACH MANIFOLDS
    LAROTONDA, A
    ZALDUENDO, I
    PACIFIC JOURNAL OF MATHEMATICS, 1985, 120 (02) : 401 - 416
  • [29] THE PROJECTION THEOREM FOR SPECTRAL SETS
    BEKKA, ME
    MONATSHEFTE FUR MATHEMATIK, 1986, 101 (01): : 1 - 10
  • [30] SETS OF STRONG SPECTRAL RESOLUTION
    BENEDETT.JJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 570 - &