On fixed-domain asymptotics and covariance tapering in Gaussian random field models

被引:40
|
作者
Wang, Daqing [1 ]
Loh, Wei-Liem [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
来源
关键词
Asymptotic normality; covariance tapering; fixed-domain asymptotics; Gaussian random field; Matern covariance; maximum likelihood estimation; spatial statistics; strong consistency; INTERPOLATION;
D O I
10.1214/11-EJS607
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian random fields are commonly used as models for spatial processes and maximum likelihood is a preferred method of choice for estimating the covariance parameters. However if the sample size n is large, evaluating the likelihood can be a numerical challenge. Covariance tapering is a way of approximating the covariance function with a taper (usually a compactly supported function) so that the computational burden is reduced. This article studies the fixed-domain asymptotic behavior of the tapered MLE for the microergodic parameter of a Matern covariance function when the taper support is allowed to shrink as n -> infinity. In particular if the dimension of the underlying space is <= 3, conditions are established in which the tapered MLE is strongly consistent and also asymptotically normal. Numerical experiments are reported that gauge the quality of these approximations for finite n.
引用
收藏
页码:238 / 269
页数:32
相关论文
共 50 条
  • [21] Gaussian random field models of aerogels
    Quintanilla, J
    Reidy, RF
    Gorman, BP
    Mueller, DW
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (08) : 4584 - 4589
  • [22] ESTIMATION AND PREDICTION USING GENERALIZED WENDLAND COVARIANCE FUNCTIONS UNDER FIXED DOMAIN ASYMPTOTICS
    Bevilacqua, Moreno
    Faouzi, Tarik
    Furrer, Reinhard
    Porcu, Emilio
    [J]. ANNALS OF STATISTICS, 2019, 47 (02): : 828 - 856
  • [23] Maximum likelihood estimation for a bivariate Gaussian process under fixed domain asymptotics
    Velandia, Daira
    Bachoc, Francois
    Bevilacqua, Moreno
    Gendre, Xavier
    Loubes, Jean-Michel
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 2978 - 3007
  • [24] A comparative study of Gaussian geostatistical models and Gaussian Markov random field models
    Song, Hae-Ryoung
    Fuentes, Montserrat
    Ghosh, Sujit
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (08) : 1681 - 1697
  • [25] Latent Gaussian random field mixture models
    Bolin, David
    Wallin, Jonas
    Lindgren, Finn
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 130 : 80 - 93
  • [26] ASYMPTOTICS OF UNIFORMLY RANDOM LOZENGE TILINGS OF POLYGONS. GAUSSIAN FREE FIELD
    Petrov, Leonid
    [J]. ANNALS OF PROBABILITY, 2015, 43 (01): : 1 - 43
  • [27] The Shkarofsky-Gneiting class of covariance models for bivariate Gaussian random fields
    Porcu, Emilio
    Bevilacqua, Moreno
    Hering, Amanda S.
    [J]. STAT, 2018, 7 (01):
  • [28] Calibration of Gaussian Random Field stochastic EUV models
    Latypov, Azat M.
    Wei, Chih-, I
    De Bisschop, Peter
    Khaira, Gurdaman
    Fenger, Germain
    [J]. OPTICAL AND EUV NANOLITHOGRAPHY XXXV, 2022, 12051
  • [29] Singularities in learning models: Gaussian random field approach
    Amari, S
    Ozeki, T
    Park, H
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 1565 - 1569
  • [30] Gaussian Markov random field spatial models in GAMLSS
    De Bastiani, Fernanda
    Rigby, Robert A.
    Stasinopoulous, Dimitrios M.
    Cysneiros, Audrey H. M. A.
    Uribe-Opazo, Miguel A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (01) : 168 - 186