Stable sustainment of plasmas with electron internal transport barrier by ECH in the LHD

被引:4
|
作者
Yoshimura, Y. [1 ]
Kasahara, H. [1 ]
Tokitani, M. [1 ,2 ]
Sakamoto, R. [1 ,2 ]
Ueda, Y. [3 ]
Marushchenko, N. B. [4 ]
Seki, R. [1 ,2 ]
Kubo, S. [1 ,5 ]
Shimozuma, T. [1 ]
Igami, H. [1 ]
Takahashi, H. [1 ,2 ]
Tsujimura, T. I. [1 ]
Makino, R. [1 ]
Kobayashi, S. [1 ]
Ito, S. [1 ]
Mizuno, Y. [1 ]
Okada, K. [5 ]
Akiyama, T. [1 ]
Tanaka, K. [1 ]
Tokuzawa, T. [1 ]
Yamada, I. [1 ]
Yamada, H. [1 ,2 ]
Mutoh, T. [6 ]
Takeiri, Y. [1 ,2 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu, Japan
[2] Grad Univ Adv Studies SOKENDAI, Dept Fus Sci, Hayama, Japan
[3] Osaka Univ, Grad Sch Engn, Osaka, Japan
[4] Max Planck Inst Plasma Phys, EURATOM Assoc, Greifswald, Germany
[5] Nagoya Univ, Nagoya, Aichi, Japan
[6] Chubu Univ, Kasugai, Aichi, Japan
关键词
long pulse discharge; electron cyclotron heating; internal transport barrier; LHD; CONFINEMENT; OPERATION; PROGRESS;
D O I
10.1088/1361-6587/aa9950
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The long pulse experiments in the Large Helical Device has made progress in sustainment of improved confinement states. It was found that steady-state sustainment of the plasmas with improved confinement at the core region, that is, electron internal transport barrier (e-ITB), was achieved with no significant difficulty. Sustainment of a plasma having e-ITB with the line average electron density n(e_ave) of 1.1 x 10(19) m(-3) and the central electron temperature T-e0 of similar to 3.5 keV for longer than 5 min only with 340 kW ECH power was successfully demonstrated.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Isotope effects in self-organization of internal transport barrier and concomitant edge confinement degradation in steady-state LHD plasmas
    T. Kobayashi
    H. Takahashi
    K. Nagaoka
    M. Sasaki
    M. Nakata
    M. Yokoyama
    R. Seki
    M. Yoshinuma
    K. Ida
    Scientific Reports, 9
  • [22] ELECTRON-ENERGY DISTRIBUTIONS OF ECH PLASMAS
    LAZAR, NH
    ARD, WB
    DUNLAP, JL
    HASTE, GR
    LYON, JF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1252 - 1253
  • [23] Electron cyclotron heating (ECH) of tokamak plasmas
    Hoshino, Katsumichi, 1600, (27):
  • [24] Study of internal transport barrier triggering mechanism in tokamak plasmas
    Dong, JQ
    Mou, ZZ
    Long, YX
    Mahajan, SM
    PHYSICS OF PLASMAS, 2004, 11 (12) : 5673 - 5679
  • [25] Minimum energy state of tokamak plasmas with an internal transport barrier
    Tamano, T
    Katanuma, I
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : A307 - A312
  • [26] Impact of avalanche type of transport on internal transport barrier formation in tokamak plasmas
    F. Kin
    K. Itoh
    T. Bando
    K. Shinohara
    N. Oyama
    A. Terakado
    M. Yoshida
    S. Sumida
    Scientific Reports, 13
  • [27] Impact of avalanche type of transport on internal transport barrier formation in tokamak plasmas
    Kin, F.
    Itoh, K.
    Bando, T.
    Shinohara, K.
    Oyama, N.
    Terakado, A.
    Yoshida, M.
    Sumida, S.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] STUDY OF THE EFFECT OF LOCALIZED ECH ON TRANSPORT AND STABILITY IN PLASMAS
    KRITZ, AH
    HSUAN, H
    CAVALLO, A
    MCCUNE, D
    MIKKELSEN, DR
    RUTHERFORD, PH
    WHITE, RB
    AIP CONFERENCE PROCEEDINGS, 1985, (129) : 235 - 238
  • [29] ELECTRON-CYCLOTRON HEATING (ECH) OF TOKAMAK PLASMAS
    HOSHINO, K
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1990, 27 (05) : 391 - 405
  • [30] TEMPERATURE LIMIT IN ECH HOT-ELECTRON PLASMAS
    UCKAN, NA
    PHYSICS OF FLUIDS, 1982, 25 (12) : 2381 - 2384