Chaos Raman Optical Time-Domain Reflectometry for Millimeter-Level Spatial Resolution Temperature Sensing

被引:18
|
作者
Zhou, Xinxin [1 ,2 ]
Li, Jian [1 ,2 ]
Xu, Yang [1 ,2 ]
Yin, Zitong [1 ,2 ]
Wang, Chenyi [1 ,2 ]
Yu, Fuhao [1 ,2 ]
Qiao, Lijun [1 ,2 ]
Xue, Xiaohui [1 ,2 ]
Zhang, Jianzhong [1 ,2 ]
Zhang, Mingjiang [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Minist Educ & Shanxi Prov, Key Lab Adv Transducers & Intelligent Control Sys, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Phys & Optoelect, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial resolution; Chaos; Temperature sensors; Optical fiber sensors; Optical pulses; Fiber lasers; Backscatter; distributed fiber sensing; Raman scattering; spatial resolution; LONG-RANGE; SENSOR; IMPROVEMENT; LIGHT;
D O I
10.1109/JLT.2021.3116203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Raman optical time-domain reflectometry (ROTDR) uses the Raman backscattering signal of an optical pulse to obtain environmental information along the sensing fiber, with the pulse width limiting spatial resolution to the meter level in current systems. To solve this problem, we propose a chaos ROTDR system to eliminate the superposition effect of Raman backscattering response caused by pulse width. Here, the chaotic laser is applied as the sensing source instead of a conventional laser. For the random amplitude characteristics of the chaotic laser in time series, the chaotic Raman backscattering signal of individual points along the sensing fiber can be obtained, so that the millimeter level spatial resolution is realized. Firstly, the propagation equation of the chaotic Raman backscattering signal is established. Subsequently, the most relevant factors impacting the performance of spatial resolution and the signal-to-noise ratio (SNR) could be addressed based on two methods proposed in this study: one is the time-domain differential reconstruction (TDDR), and the other is the short-scale time-domain correlation compression (SSTDCC). Finally, the spatial resolution of 5 mm and temperature sensitivity of 0.1 K are achieved, which is an unprecedented breakthrough compared to the state-of-the-art technology.
引用
收藏
页码:7529 / 7538
页数:10
相关论文
共 50 条
  • [21] Chaos correlation optical time domain reflectometry
    Wang AnBang
    Wang YunCai
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (02) : 398 - 404
  • [22] THE SPATIAL SENSITIVITY OF TIME-DOMAIN REFLECTOMETRY - RESPONSE
    BAKER, JM
    LASCANO, RJ
    [J]. SOIL SCIENCE, 1991, 151 (03) : 256 - 257
  • [23] Determination of thermal residual strain in cabled optical fiber with high spatial resolution by Brillouin optical time-domain reflectometry
    Lu, Yuangang
    Li, Cunlei
    Zhang, Xuping
    Yam, Scott
    [J]. OPTICS AND LASERS IN ENGINEERING, 2011, 49 (9-10) : 1111 - 1117
  • [24] Time-domain slicing optical frequency domain reflectometry
    Bai, Qing
    Shen, Zhen
    Wu, Luxuan
    Liang, Changshuo
    Wang, Yu
    Liu, Xin
    Jin, Baoquan
    [J]. OPTICS LETTERS, 2024, 49 (10) : 2541 - 2544
  • [25] Wavelength Coded Optical Time-Domain Reflectometry
    Zhu, Ning Hua
    Ke, Jian Hong
    Zhang, Hong Guang
    Chen, Wei
    Liu, Jian Guo
    Zhao, Ling Juan
    Wang, Wei
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (06) : 972 - 977
  • [26] Computational Brillouin Optical Time-Domain Reflectometry
    Guo, Xinyue
    Zhou, Da-Peng
    Peng, Wei
    [J]. AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [27] COMPLEMENTARY CORRELATION OPTICAL TIME-DOMAIN REFLECTOMETRY
    SISCHKA, F
    NEWTON, SA
    NAZARATHY, M
    [J]. HEWLETT-PACKARD JOURNAL, 1988, 39 (06): : 14 - 21
  • [28] AUTOMATION OF OPTICAL TIME-DOMAIN REFLECTOMETRY MEASUREMENTS
    MAIER, FA
    SEEGER, H
    [J]. HEWLETT-PACKARD JOURNAL, 1995, 46 (01): : 57 - 62
  • [29] Computational Brillouin Optical Time-Domain Reflectometry
    Shu, Dayong
    Guo, Xinyue
    Lv, Tuo
    Zhou, Da-Peng
    Peng, Wei
    Chen, Liang
    Bao, Xiaoyi
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (09) : 3467 - 3473
  • [30] Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry
    Wang, Feng
    Zhang, Xuping
    Wang, Xiangchuan
    Chen, Haisheng
    [J]. OPTICS LETTERS, 2013, 38 (14) : 2437 - 2439