A minimum distance bound for quasi-nD-cyclic codes

被引:6
|
作者
Ozbudak, Ferruh [1 ,2 ]
Ozkaya, Buket [3 ]
机构
[1] Middle East Tech Univ, Dept Math, Inonu Bulvari, TR-06531 Ankara, Turkey
[2] Middle East Tech Univ, Inst Appl Math, Inonu Bulvari, TR-06531 Ankara, Turkey
[3] Sabanci Univ, FENS, TR-34956 Istanbul, Turkey
关键词
Quasi-cyclic code; Multidimensional quasi-cyclic code; Multidimensional cyclic code; Trace representation; Multidimensional convolutional code; CONVOLUTIONAL-CODES; ALGEBRAIC STRUCTURE; FINITE-FIELDS; RATE; 1/P; CONSTRUCTION;
D O I
10.1016/j.ffa.2016.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new concatenated structure for multidimensional quasi-cyclic (QnDC) codes over F-q and we give a trace representation for their codewords, which extends the known representations of QC and nD cyclic codes. Based on these results, we obtain a minimum distance bound for QnDC dyclic codes. Since QnDC codes are naturally related to nD convolutional codes, this bound also applies to a special class of 1-generator 2D convolutional codes. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 222
页数:30
相关论文
共 50 条