LINEAR COMPUTATION CODING

被引:6
|
作者
Mueller, Ralf R. [1 ]
Gaede, Bernhard [1 ]
Bereyhi, Ali [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Digital Commun, Erlangen, Germany
关键词
approximate computing; fixed-point arithmetic; neural networks; quantization; MULTIPLICATION;
D O I
10.1109/ICASSP39728.2021.9414317
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We introduce the new concept of computation coding. For linear functions, we present an algorithm to reduce the computational cost of multiplying an arbitrary given matrix with an unknown vector. It decomposes the given matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical implementation of deep neural networks, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.
引用
收藏
页码:5065 / 5069
页数:5
相关论文
共 50 条
  • [21] Linear groups and computation
    Detinko, A. S.
    Flannery, D. L.
    EXPOSITIONES MATHEMATICAE, 2019, 37 (04) : 454 - 484
  • [22] A coding and control mechanism of natural computation
    Gong, T
    Cai, JF
    Cai, ZX
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2003, : 727 - 732
  • [23] Neural correlations, population coding and computation
    Averbeck, BB
    Latham, PE
    Pouget, A
    NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) : 358 - 366
  • [24] Neural correlations, population coding and computation
    Bruno B. Averbeck
    Peter E. Latham
    Alexandre Pouget
    Nature Reviews Neuroscience, 2006, 7 : 358 - 366
  • [25] Function computation via subspace coding
    Karamchandani, Nikhil
    Keller, Lorenzo
    Fragouli, Christina
    Franceschetti, Massimo
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 2398 - 2402
  • [26] Function computation via subspace coding
    Karamchandani, Nikhil
    Keller, Lorenzo
    Fragouli, Christina
    Franceschetti, Massimo
    PHYSICAL COMMUNICATION, 2013, 6 : 134 - 141
  • [27] COMPUTATION OF RANDOM CODING EXPONENT FUNCTIONS
    ARIMOTO, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) : 665 - 671
  • [28] Computation of the coding gain for subband coders
    Calvagno, G
    Mian, GA
    Rinaldo, R
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (04) : 475 - 487
  • [29] CODING AND COMPUTATION WITH NEURAL SPIKE TRAINS
    BIALEK, W
    ZEE, A
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (1-2) : 103 - 115
  • [30] Linear Network Coding, Linear Index Coding and Representable Discrete Polymatroids
    Muralidharan, Vijayvaradharaj Tirucherai
    Rajan, B. Sundar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (07) : 4096 - 4119