Efficient quantum dot-sensitized solar cell with polystyrene-modified TiO2 photoanode and with guanidine thiocyanate in its polysulfide electrolyte

被引:35
|
作者
Chou, Chen-Yu [1 ]
Lee, Chuan-Pei [1 ]
Vittal, R. [1 ]
Ho, Kuo-Chuan [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
关键词
Guanidine thiocyanate (GuSCN); Monodispersed polystyrene (PS); Polysulfide electrolyte; Quantum dot-sensitized solar cell (QDSSC); Successive ionic layer adsorption and reaction (SILAR); EXTINCTION COEFFICIENT; NANOCRYSTALS; FILMS; CDSE; PHOTOSENSITIZATION; ENERGY;
D O I
10.1016/j.jpowsour.2011.03.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monodispersed polystyrene (PS, ca. 300 nm) latex particles are incorporated into a TiO2 film. A polystyrene-modified TiO2 film (M-TiO2) with micro-cluster structure, containing micro/nano-composite pores is thus obtained after sintering. Cadmium sulfide (CdS) quantum dots (CdS-QDs) are accumulated over M-TiO2 and bare TiO2 films (B-TiO2) by successive ionic layer adsorption and reaction (SILAR); we designate these films as M-TiO2/CdS and B-TiO2/CdS, respectively. Influence of SILAR cycles used for depositing CdS on B-TiO2 and M-TiO2 films on the performance of the pertinent quantum dot-sensitized solar cells (QDSSCs) is studied. The QDSSC with 6 SILAR cycles of M-TiO2/CdS (M-TiO2/CdS6) exhibited a solar-to-electricity conversion efficiency (a) of 1.79%, while the cell with B-TiO2/CdS5 shows an eta of 1.35%, under the illumination of one sun. Moreover. guanidine thiocyanate (GuSCN) is found to be a promising additive to the polysulfide electrolyte. The additive renders higher conversion efficiency (2.01%) to its QDSSC. Durability of the CdS-QDSSC is also tested. Scanning electron microscopy (SEM) is used to obtain the images of TiO2 films and energy-dispersive X-ray spectroscopy (EDX) is employed to study the stoichiometric ratios of M-TiO2/CdS and B-TiO2/CdS. Incident photon-to-current conversion efficiencies (IPCE) of the QDSSCs are obtained to confirm the J(SC) behaviors of the cells. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6595 / 6602
页数:8
相关论文
共 50 条
  • [21] Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte
    Sung, Sang Do
    Lim, Iseul
    Kang, Paul
    Lee, Chongmu
    Lee, Wan In
    CHEMICAL COMMUNICATIONS, 2013, 49 (54) : 6054 - 6056
  • [22] Enhanced photovoltaic performance of CdSe quantum dot-sensitized solar cells with Eu-doped TiO2 photoanode
    Wang, Dongyang
    Zou, Wenhua
    Chen, Yexin
    Duan, Junhong
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (11):
  • [23] Surface modification on TiO2 nanoparticles in CdS/CdSe Quantum Dot-sensitized Solar Cell
    Kim, Soo-Kyoung
    Son, Min-Kyu
    Park, Songyi
    Jeong, Myeong-Soo
    Prabakar, Kandasamy
    Kim, Hee-Je
    ELECTROCHIMICA ACTA, 2014, 118 : 118 - 123
  • [24] Enhanced photovoltaic performance of CdSe quantum dot-sensitized solar cells with Eu-doped TiO2 photoanode
    Dongyang Wang
    Wenhua Zou
    Yexin Chen
    Junhong Duan
    Applied Physics A, 2023, 129
  • [25] ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell
    Liu, Huan
    Zhang, Gengmin
    Sun, Wentao
    Shen, Ziyong
    Shi, Mingji
    PLOS ONE, 2015, 10 (09):
  • [26] Cu-Implanted MXene/TiO2 Photoanodes for Efficient Quantum Dot-Sensitized Solar Cells
    Singh, Iqbal
    Devi, Devarani
    Singh, Fouran
    Mahajan, Aman
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2025,
  • [27] A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells
    Jovanovski, Vasko
    Gonzalez-Pedro, Victoria
    Gimenez, Sixto
    Azaceta, Eneko
    Cabanero, German
    Grande, Hans
    Tena-Zaera, Ramon
    Mora-Sero, Ivan
    Bisquert, Juan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) : 20156 - 20159
  • [28] Synthesis, characterization and electrochemical impedance study of CdS quantum dot-sensitized solar cell with reduced graphene oxide/TiO2 composite photoanode
    Ahmad, Hafizah
    Sharma, Tejas
    Ng, Chai Yan
    Jun, H. K.
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (01)
  • [29] Synthesis, characterization and electrochemical impedance study of CdS quantum dot-sensitized solar cell with reduced graphene oxide/TiO2 composite photoanode
    Hafizah Ahmad
    Tejas Sharma
    Chai Yan Ng
    H K Jun
    Bulletin of Materials Science, 46
  • [30] Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO2 Nanosheets Photoanode
    Kuo-Yen Huang
    Yi-Hsiang Luo
    Hsin-Ming Cheng
    Jau Tang
    Jin-Hua Huang
    Nanoscale Research Letters, 2019, 14