Metal-free polypeptide redox flow batteries

被引:10
|
作者
Liang, Zhiming [1 ]
Nguyen, Tan P. [2 ]
Attanayake, N. Harsha [1 ]
Easley, Alexandra D. [3 ]
Lutkenhaus, Jodie L. [3 ,4 ]
Wooley, Karen L. [2 ,3 ,4 ]
Odom, Susan A. [1 ]
机构
[1] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
[2] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[4] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
来源
MATERIALS ADVANCES | 2022年 / 3卷 / 16期
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL PROPERTIES;
D O I
10.1039/d2ma00498d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-aqueous organic redox flow batteries (NAORFBs) are considered emerging large-scale energy storage systems due to their larger voltage window as compared to aqueous systems and their metal-free nature. However, low solubility, sustainability, and crossover of redox materials remain major challenges for the development of NAORFBs. Here, we report the use of redox active alpha-helical polypeptides suitable for NAORFBs. The polypeptides exhibit less crossover than small molecule analogs for both Daramic 175 separator and FAPQ 375 PP membrane, with FAPQ 375 PP preventing crossover most effectivley. Polypeptide NAORFBs assembled with a TEMPO-based polypeptide catholyte and viologen-based polypeptide anolyte exhibit low capacity fade (ca. 0.1% per cycle over 500 cycles) and high coulombic efficiency (>99.5%). The polypeptide NAORFBs exhibit an output voltage of 1.1 V with a maximum capacity of 0.53 A h L-1 (39% of the theoretical capacity). After 500 charge-discharge cycles, 60% of the initial capacity was retained. Post cycling analysis using spectral and electrochemical methods demonstrate that the polypeptide backbone and the ester side chain linkages are stable during electrochemical cycling. Taken together, these polypeptides offer naturally-derived, deconstructable platforms for addressing the needs of metal-free energy storage.
引用
收藏
页码:6558 / 6565
页数:8
相关论文
共 50 条
  • [41] In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium–sulfur batteries
    Shijie Zhang
    Peng Zhang
    Ruohan Hou
    Bin Li
    Yongshang Zhang
    Kangli Liu
    Xilai Zhang
    Guosheng Shao
    Journal of Energy Chemistry , 2020, (08) : 281 - 290
  • [42] Metal-free magnets
    Colette Whitfield
    Nature Reviews Chemistry, 2022, 6 : 88 - 88
  • [43] On "metal-free" reactions
    Tyson, Julian
    CHEMICAL & ENGINEERING NEWS, 2022, 100 (10) : 5 - 5
  • [44] Metal-free catalysis
    Feil, S
    CHEMIE IN UNSERER ZEIT, 2006, 40 (02) : 90 - 90
  • [45] METAL-FREE HYDROGENATIONS
    Ritter, Steve
    CHEMICAL & ENGINEERING NEWS, 2012, 90 (09) : 8 - 8
  • [46] β Metal-free phthalocyanine
    Matsumoto, Shinya
    Matsuhama, Keiji
    Mizuguchi, Jin
    Acta Crystallographica, Section C: Crystal Structure Communications, 1999, 55 (pt 1): : 131 - 133
  • [47] Metal-Free Organocatalysis
    Csaky, Aurelio G.
    CATALYSTS, 2018, 8 (05):
  • [48] A metal-free landmark
    Douglas W. Stephan
    Nature Chemistry, 2014, 6 : 952 - 953
  • [49] Metal-free oxidations
    不详
    GREEN CHEMISTRY, 1999, 1 (06) : G181 - G184
  • [50] β metal-free phthalocyanine
    Matsumoto, S
    Matsuhama, K
    Mizuguchi, J
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1999, 55 : 131 - 133