Simple estimators for treatment parameters in a latent-variable framework

被引:56
|
作者
Heckman, J [1 ]
Tobias, JL
Vytlacil, E
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ Calif Irvine, Irvine, CA 92717 USA
[3] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
10.1162/003465303322369867
中图分类号
F [经济];
学科分类号
02 ;
摘要
This note derives simply computed closed-form expressions for the average treatment effect, the effect of treatment on the treated, the local average treatment effect, and the marginal treatment effect in a latent-variable framework for both normal and nonnormal models. Asymptotic standard errors for versions of these parameters that average over observed characteristics are also obtained. The performances of the derived estimators are also evaluated in Monte Carlo experiments under correct specification and misspecification.
引用
收藏
页码:748 / 755
页数:8
相关论文
共 50 条
  • [21] Memory span and general intelligence: A latent-variable approach
    Colom, R
    Abad, FJ
    Rebollo, I
    Shih, PC
    INTELLIGENCE, 2005, 33 (06) : 623 - 642
  • [22] Somatic Symptom Perception and Interoception A Latent-Variable Approach
    Witthoeft, Michael
    Braescher, Anne-Kathrin
    Jungmann, Stefanie M.
    Koteles, Ferenc
    ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY, 2020, 228 (02): : 100 - 109
  • [23] A LATENT-VARIABLE CAUSAL MODEL OF FACULTY REPUTATIONAL RATINGS
    KING, S
    WOLFLE, LM
    RESEARCH IN HIGHER EDUCATION, 1987, 27 (02) : 99 - 106
  • [24] A Scalable Strategy for the Identification of Latent-Variable Graphical Models
    Alpago, Daniele
    Zorzi, Mattia
    Ferrante, Augusto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3349 - 3362
  • [25] Executive function and the continued influence of misinformation: A latent-variable analysis
    McIlhiney, Paul L.
    Gignac, Gilles
    Ecker, Ullrich K. H. S.
    Kennedy, Briana S.
    Weinborn, Michael S.
    PLOS ONE, 2023, 18 (04):
  • [26] Training Chain-of-Thought via Latent-Variable Inference
    Phan, Du
    Hoffman, Matthew D.
    Dohan, David
    Douglas, Sholto
    Le, Tuan Anh
    Parisi, Aaron
    Sountsov, Pavel
    Sutton, Charles
    Vikram, Sharad
    Saurous, Rif A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Heterogenous data fusion via a probabilistic latent-variable model
    Yu, K
    Tresp, V
    ORGANIC AND PERVASIVE COMPUTING - ARCS 2004, 2004, 2981 : 20 - 30
  • [28] Tensors over Semirings for Latent-Variable Weighted Logic Programs
    Balkir, Esma
    Gildea, Daniel
    Cohen, Shay B.
    16TH INTERNATIONAL CONFERENCE ON PARSING TECHNOLOGIES AND IWPT 2020 SHARED TASK ON PARSING INTO ENHANCED UNIVERSAL DEPENDENCIES, 2020, : 73 - 90
  • [29] MCMC Sampling on Latent-Variable Space of Mixture of Probabilistic PCA
    Yamazaki, Keisuke
    6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS, AND THE 13TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS, 2012, : 1508 - 1513
  • [30] ON THE EFFECTIVENESS OF TWO-STEP LEARNING FOR LATENT-VARIABLE MODELS
    Subakan, Cem
    Gasse, Maxime
    Charlin, Laurent
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,