Simple estimators for treatment parameters in a latent-variable framework

被引:56
|
作者
Heckman, J [1 ]
Tobias, JL
Vytlacil, E
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ Calif Irvine, Irvine, CA 92717 USA
[3] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
10.1162/003465303322369867
中图分类号
F [经济];
学科分类号
02 ;
摘要
This note derives simply computed closed-form expressions for the average treatment effect, the effect of treatment on the treated, the local average treatment effect, and the marginal treatment effect in a latent-variable framework for both normal and nonnormal models. Asymptotic standard errors for versions of these parameters that average over observed characteristics are also obtained. The performances of the derived estimators are also evaluated in Monte Carlo experiments under correct specification and misspecification.
引用
收藏
页码:748 / 755
页数:8
相关论文
共 50 条
  • [1] ON THE ASYMPTOTIC OPTIMALITY OF ALTERNATIVE MINIMUM-DISTANCE ESTIMATORS IN LINEAR LATENT-VARIABLE MODELS
    SATORRA, A
    NEUDECKER, H
    ECONOMETRIC THEORY, 1994, 10 (05) : 867 - 883
  • [2] INFORMATION MATRICES IN LATENT-VARIABLE MODELS
    MISLEVY, RJ
    SHEEHAN, KM
    JOURNAL OF EDUCATIONAL STATISTICS, 1989, 14 (04): : 335 - 350
  • [3] Deep Latent-Variable Kernel Learning
    Liu, Haitao
    Ong, Yew-Soon
    Jiang, Xiaomo
    Wang, Xiaofang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10276 - 10289
  • [4] REVERSE REGRESSIONS FOR LATENT-VARIABLE MODELS
    LEVINE, DK
    JOURNAL OF ECONOMETRICS, 1986, 32 (02) : 291 - 292
  • [5] The relationship between treatment parameters within a latent variable framework
    Heckman, JJ
    Vytlacil, EJ
    ECONOMICS LETTERS, 2000, 66 (01) : 33 - 39
  • [6] LATENT-VARIABLE MODELS OF ATTRIBUTIONAL MEASUREMENT
    SMITH, ER
    MILLER, FD
    PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN, 1982, 8 (02) : 221 - 225
  • [7] A LATENT-VARIABLE MODEL OF QUALITY DETERMINATION
    GERTLER, PJ
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1988, 6 (01) : 97 - 104
  • [8] Latent-variable Private Information Retrieval
    Samy, Islam
    Attia, Mohamed A.
    Tandon, Ravi
    Lazos, Loukas
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1071 - 1076
  • [9] A Latent-Variable Model for Intrinsic Probing
    Stanczak, Karolina
    Hennigen, Lucas Torroba
    Williams, Adina
    Cotterell, Ryan
    Augenstein, Isabelle
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13591 - 13599
  • [10] INTERPRETATION OF LATENT-VARIABLE REGRESSION-MODELS
    KVALHEIM, OM
    KARSTANG, TV
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 7 (1-2) : 39 - 51