Factoring matrices into the product of two matrices

被引:13
|
作者
Huhtanen, Marko [1 ]
机构
[1] Helsinki Univ Technol, Inst Math, FIN-02150 Espoo, Finland
基金
芬兰科学院;
关键词
matrix factorization; inverse of a matrix subspace; product of matrix subspaces;
D O I
10.1007/s10543-007-0151-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Linear algebra of factoring a matrix into the product of two matrices with special properties is developed. This is accomplished in terms of the so-called inverse of a matrix subspace which yields an extended notion for the invertibility of a matrix. The product of two matrix subspaces gives rise to a natural generalization of the concept of matrix subspace. Extensions of these ideas are outlined. Several examples on factoring are presented.
引用
收藏
页码:793 / 808
页数:16
相关论文
共 50 条
  • [31] Wreath product of matrices
    D'Angeli, Daniele
    Donno, Alfredo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 513 : 276 - 303
  • [32] ON HADAMARD PRODUCT OF MATRICES
    DJOKOVIC, DZ
    MATHEMATISCHE ZEITSCHRIFT, 1965, 86 (05) : 395 - &
  • [33] MATRICES WITH PRODUCT ZERO
    ROBINSON, GR
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (05): : 464 - 465
  • [34] TRACE OF A PRODUCT OF MATRICES
    GERSTELL, M
    GRINBERG, E
    JAGERS, AA
    LANTZ, DC
    MATTICS, LE
    ROSENTHAL, E
    TAYLOR, W
    ZWIER, PJ
    ODONI, RWK
    WILKER, JB
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (04): : 312 - 312
  • [35] Factoring Gaussian precision matrices for linear dynamic models
    Frankel, Joe
    King, Simon
    PATTERN RECOGNITION LETTERS, 2007, 28 (16) : 2264 - 2272
  • [36] Factoring matrices with a tree-structured sparsity pattern
    Druinsky, Alex
    Toledo, Sivan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1099 - 1110
  • [37] Two Matrices
    Galperin, Gregory
    Ionin, Yury
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (06): : 566 - 566
  • [38] Large n Limit for the Product of Two Coupled Random Matrices
    Silva, Guilherme L. F.
    Zhang, Lun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (03) : 2345 - 2427
  • [39] Jordan triple product homomorphisms on Hermitian matrices of dimension two
    Bukovsek, Damjana Kokol
    Mojskerc, Blaz
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 227 - 250
  • [40] Path product matrices and eventually inverse M-matrices
    Johnson, Charles R.
    Smith, Ronald L.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 370 - 376