Maxwell-Chern-Simons vortices and holographic superconductors

被引:13
|
作者
Tallarita, Gianni [1 ]
Thomas, Steven [1 ]
机构
[1] Queen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Gauge-gravity correspondence; Black Holes in String Theory; AdS-CFT Correspondence; Holography and condensed matter physics (AdS/CMT); AXION HAIR; MODELS;
D O I
10.1007/JHEP12(2010)090
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate vortex solutions of a charged scalar field in Einstein-Maxwell theory in 3+1 dimensions with the addition of an axionic coupling to the Maxwell field. We show that the inclusion of such a term, together with a suitable potential for the axion field, can induce an effective Chern-Simons term on the 2+1 dimensional boundary. We obtain numerical solutions of the equations of motion and find Maxwell-Chern-Simons like magnetic vortex con figurations, where the magnetic field profile varies with the size of the effective Chern-Simons coupling. The axion field has a non-trivial pro file inside the AdS bulk and on the 2+1 dimensional boundary but does not condense at spatial in finity.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Casimir effect of the Maxwell-Chern-Simons field
    Zhang, ZH
    Li, ZP
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 1998, 22 (01): : 87 - 91
  • [32] Multiple vortices for a self-dual CP(1) Maxwell-Chern-Simons model
    Chiacchio F.
    Ricciardi T.
    Nonlinear Differential Equations and Applications NoDEA, 2007, 13 (5-6) : 563 - 584
  • [33] S-Dual of Maxwell-Chern-Simons Theory
    Armoni, Adi
    PHYSICAL REVIEW LETTERS, 2023, 130 (14)
  • [34] On duality of the noncommutative extension of the Maxwell-Chern-Simons model
    Guimaraes, MS
    Rodrigues, DC
    Wotzasek, C
    Noronha, JL
    PHYSICS LETTERS B, 2005, 605 (3-4) : 419 - 425
  • [35] Finiteness of the noncommutative supersymmetric Maxwell-Chern-Simons theory
    Ferrari, A. F.
    Gomes, M.
    Nascimento, J. R.
    Petrov, A. Yu.
    Da Silva, A. J.
    Silva, E. O.
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [36] Viscous Maxwell-Chern-Simons Theory for Topological Photonics
    Van Mechelen, Todd
    Jacob, Zubin
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [37] TOPOLOGICAL EXCITATIONS IN COMPACT MAXWELL-CHERN-SIMONS THEORY
    DIAMANTINI, MC
    SODANO, P
    TRUGENBERGER, CA
    PHYSICAL REVIEW LETTERS, 1993, 71 (13) : 1969 - 1972
  • [38] Maxwell-Chern-Simons theory in covariant and coulomb gauges
    Haller, K
    LimLombridas, E
    ANNALS OF PHYSICS, 1996, 246 (01) : 1 - 48
  • [39] Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains (vol 221, pg 167, 2005)
    Han, Jongmin
    Kim, Namkwon
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) : 674 - 674
  • [40] MAXWELL-CHERN-SIMONS THEORY AND AN AMBIGUITY IN CHERN-SIMONS PERTURBATION-THEORY
    LEBLANC, M
    THOMAZ, MT
    PHYSICS LETTERS B, 1992, 281 (3-4) : 259 - 264