CAD systems for COVID-19 diagnosis and disease stage classification by segmentation of infected regions from CT images

被引:6
|
作者
Alshayeji, Mohammad H. [1 ]
ChandraBhasi Sindhu, Silpa [2 ]
Abed, Sa'ed [1 ]
机构
[1] Kuwait Univ, Dept Comp Engn, Coll Engn & Petr, POB 5969, Safat 13060, Kuwait
[2] Different Media, POB 14390, Kuwait, Kuwait
关键词
Computer-aided diagnosis; COVID-19; Computed tomography; Deep neural network; Semantic segmentation; Machine learning; Severity score; Classification; ACCURATE DIAGNOSIS; CNN;
D O I
10.1186/s12859-022-04818-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Here propose a computer-aided diagnosis (CAD) system to differentiate COVID-19 (the coronavirus disease of 2019) patients from normal cases, as well as to perform infection region segmentation along with infection severity estimation using computed tomography (CT) images. The developed system facilitates timely administration of appropriate treatment by identifying the disease stage without reliance on medical professionals. So far, this developed model gives the most accurate, fully automatic COVID-19 real-time CAD framework. Results The CT image dataset of COVID-19 and non-COVID-19 individuals were subjected to conventional ML stages to perform binary classification. In the feature extraction stage, SIFT, SURF, ORB image descriptors and bag of features technique were implemented for the appropriate differentiation of chest CT regions affected with COVID-19 from normal cases. This is the first work introducing this concept for COVID-19 diagnosis application. The preferred diverse database and selected features that are invariant to scale, rotation, distortion, noise etc. make this framework real-time applicable. Also, this fully automatic approach which is faster compared to existing models helps to incorporate it into CAD systems. The severity score was measured based on the infected regions along the lung field. Infected regions were segmented through a three-class semantic segmentation of the lung CT image. Using severity score, the disease stages were classified as mild if the lesion area covers less than 25% of the lung area; moderate if 25-50% and severe if greater than 50%. Our proposed model resulted in classification accuracy of 99.7% with a PNN classifier, along with area under the curve (AUC) of 0.9988, 99.6% sensitivity, 99.9% specificity and a misclassification rate of 0.0027. The developed infected region segmentation model gave 99.47% global accuracy, 94.04% mean accuracy, 0.8968 mean IoU (intersection over union), 0.9899 weighted IoU, and a mean Boundary F1 (BF) contour matching score of 0.9453, using Deepabv3+ with its weights initialized using ResNet-50. Conclusions The developed CAD system model is able to perform fully automatic and accurate diagnosis of COVID-19 along with infected region extraction and disease stage identification. The ORB image descriptor with bag of features technique and PNN classifier achieved the superior classification performance.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Automatic Segmentation of Covid-19 Infected Regions in Chest CT Images Based on 2D/3D Model Ensembling
    Shi T.-Y.
    Cheng F.
    Li Z.
    Zheng C.-S.
    Xu Y.-C.
    Bai X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (02): : 317 - 328
  • [22] CGS-Net: A classification-guided framework for automated infection segmentation of COVID-19 from CT images
    Zhou, Wen
    Wang, Jihong
    Wang, Yuhang
    Liu, Zijie
    Yang, Chen
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [23] A Comparative Study of CNN Transfer Learning Classification Algorithms with Segmentation for COVID-19 Detection from CT Scan Images
    Seum, Ashek
    Raj, Amir Hossain
    Sakib, Shadman
    Hossain, Tonmoy
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 234 - 237
  • [24] P2P-COVID-GAN: Classification and Segmentation of COVID-19 Lung Infections From CT Images Using GAN
    Abirami, Nandhini
    Vincent, Durai Raj
    Kadry, Seifedine
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2021, 17 (04) : 101 - 118
  • [25] Dual attention fusion UNet for COVID-19 lesion segmentation from CT images
    Ma, Yinjin
    Zhang, Yajuan
    Chen, Lin
    Jiang, Qiang
    Wei, Biao
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (04) : 713 - 729
  • [26] COVID-19 Infection Segmentation from Chest CT Images Based on Scale Uncertainty
    Oda, Masahiro
    Zheng, Tong
    Hayashi, Yuichiro
    Otake, Yoshito
    Hashimoto, Masahiro
    Akashi, Toshiaki
    Aoki, Shigeki
    Mori, Kensaku
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 88 - 97
  • [27] An efficient technique for CT scan images classification of COVID-19
    Elmuogy, Samir
    Hikal, Noha A.
    Hassan, Esraa
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5225 - 5238
  • [28] Full Scale Attention for Automated COVID-19 Diagnosis from CT Images
    Cao, Zheng
    Mu, Cailin
    Ying, Haochao
    Wu, Jian
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3213 - 3216
  • [29] Reinforcement Learning based Diagnosis and Prediction for COVID-19 from CT Images
    Chen, Siying
    Deng, Pan
    Liu, Minghui
    Deng, Jiali
    Wang, Xiaomin
    Gong, Haigang
    Liu, Ming
    INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021), 2021, 12155
  • [30] COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images
    Enshaei, Nastaran
    Oikonomou, Anastasia
    Rafiee, Moezedin Javad
    Afshar, Parnian
    Heidarian, Shahin
    Mohammadi, Arash
    Plataniotis, Konstantinos N.
    Naderkhani, Farnoosh
    SCIENTIFIC REPORTS, 2022, 12 (01)