Macron Formed Liner as a Practical Method for Enabling Magneto-Inertial Fusion

被引:2
|
作者
Kirtley, David [1 ]
Slough, John [1 ]
机构
[1] MSNW LLC, Redmond, WA 98052 USA
关键词
Magneto-inertial fusion; Magnetic liner compression; FRC; COMPRESSION;
D O I
10.1007/s10894-010-9314-y
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
To take advantage of the smaller scale, higher density regime of MIF an efficient and repeatable method for achieving the compressional heating required to reach fusion gain conditions is needed. The macro-particle (macron) formed liner compression of the field reversed configuration (FRC) provides such a method. The approach to be described employs an assemblage of small, gram scale, macrons to form a more massive liner that both radially and axially compresses and heats the FRC plasmoid to fusion conditions. The large liner energy (several MJ) required to compress the FRC is carried in the kinetic energy of the full array of macrons. The much smaller energy required for each individual macron is obtained by accelerating the macron to similar to 3 km/s which can be accomplished remotely using conventional inductive techniques. 3D numerical calculations demonstrate that macron convergence can form a coherent liner provided minimum velocity and timing accuracy is met. Experimental results have demonstrated that a cylindrical or spherical macron can be accelerated to velocity within 2 m/s and timing less than 1 microsecond. Initial testing of a 6-stage launcher yielded 280 m/s at a final coupling efficiency of greater than 40%.
引用
收藏
页码:561 / 566
页数:6
相关论文
共 50 条
  • [21] Calculation of the Radiation Specifications of the Target Plasma in Magneto-Inertial Fusion
    Kuzenov, V. V.
    Ryzhkov, S. V.
    PHYSICS OF ATOMIC NUCLEI, 2018, 81 (11) : 1611 - 1617
  • [22] MAGNETO-INERTIAL FUSION RESEARCH IN THE UNITED STATES: A PROMISING PROSPECT
    Sinars, Daniel B.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [23] Magneto-inertial approach to direct-drive laser fusion
    Gotchev, O. V.
    Jang, N. W.
    Knauer, J. P.
    Barbero, M. D.
    Betti, R.
    Li, C. K.
    Petrasso, R. D.
    JOURNAL OF FUSION ENERGY, 2008, 27 (1-2) : 25 - 31
  • [24] Estimation of the neutron generation in the combined magneto-inertial fusion scheme
    Kuzenov, Victor V.
    Ryzhkov, Sergei V.
    Physica Scripta, 2021, 96 (12):
  • [25] An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories
    Yager-Elorriaga, D. A.
    Gomez, M. R.
    Ruiz, D. E.
    Slutz, S. A.
    Harvey-Thompson, A. J.
    Jennings, C. A.
    Knapp, P. F.
    Schmit, P. F.
    Weis, M. R.
    Awe, T. J.
    Chandler, G. A.
    Mangan, M.
    Myers, C. E.
    Fein, J. R.
    Galloway, B. R.
    Geissel, M.
    Glinsky, M. E.
    Hansen, S. B.
    Harding, E. C.
    Lamppa, D. C.
    Lewis, W. E.
    Rambo, P. K.
    Robertson, G. K.
    Savage, M. E.
    Shipley, G. A.
    Smith, I. C.
    Schwarz, J.
    Ampleford, D. J.
    Beckwith, K.
    Peterson, K. J.
    Porter, J. L.
    Rochau, G. A.
    Sinars, D. B.
    NUCLEAR FUSION, 2022, 62 (04)
  • [26] ANALYSIS OF THE COMPRESSION AND HEATING OF MAGNETIZED PLASMA TARGETS FOR MAGNETO-INERTIAL FUSION
    Ryzhkov, S. V.
    Chirkov, A. Yu
    Ivanov, A. A.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) : 135 - 138
  • [27] Magneto-Inertial Method for Determining the Relative Position and Orientation of an Object
    E. S. Chernyshov
    En Un Chye
    Measurement Techniques, 2017, 59 : 1274 - 1279
  • [28] Calculation of burn characteristics for fuel pellet simulated in magneto-inertial fusion
    Mahdavi, M.
    Gholami, A.
    FUSION ENGINEERING AND DESIGN, 2019, 142 : 33 - 39
  • [29] Magneto-Inertial Method for Determining the Relative Position and Orientation of an Object
    Chernyshov, E. S.
    Chye, En Un
    MEASUREMENT TECHNIQUES, 2017, 59 (12) : 1274 - 1279
  • [30] Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure
    Kuzenov, Victor V.
    Ryzhkov, Sergei, V
    PHYSICS OF PLASMAS, 2019, 26 (09)