Sparse Activation Maps for Interpreting 3D Object Detection

被引:6
|
作者
Chen, Qiuxiao [1 ]
Li, Pengfei [2 ]
Xu, Meng [1 ]
Qi, Xiaojun [1 ]
机构
[1] Utah State Univ, Logan, UT 84322 USA
[2] Univ Calif Riverside, Riverside, CA 92521 USA
关键词
D O I
10.1109/CVPRW53098.2021.00017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a technique to generate "visual explanations" for interpretability of volumetric-based 3D object detection networks. Specifically, we use the average pooling of weights to produce a Sparse Activation Map (SAM) which highlights the important regions of the 3D point cloud data. The SAMs is applicable to any volumetric-based models (model agnostic) to provide intuitive intermediate results at different layers to understand the complex network structures. The SAMs at the 3D feature map layer and the 2D feature map layer help to understand the effectiveness of neurons to capture the object information. The SAMs at the classification layer for each object class helps to understand the true positives and false positives of each network. The experimental results on the KITTI dataset demonstrate the visual observations of the SAM match the detection results of three volumetric-based models.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 50 条
  • [21] VPSNet: 3D object detection with voxel purification and fully sparse convolutional networks
    Wen, Jia
    Zhang, Qi
    Zhang, Guanghao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03):
  • [22] RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection
    Sun, Pei
    Wang, Weiyue
    Chai, Yuning
    Elsayed, Gamaleldin
    Bewley, Alex
    Zhang, Xiao
    Sminchisescu, Cristian
    Anguelov, Dragomir
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5721 - 5730
  • [23] PVConvNet: Pixel-Voxel Sparse Convolution for multimodal 3D object detection
    Liu, Huaijin
    Du, Jixiang
    Zhang, Yong
    Zhang, Hongbo
    Zeng, Jiandian
    PATTERN RECOGNITION, 2024, 149
  • [24] MULTI-DIMENSIONAL PRUNED SPARSE CONVOLUTION FOR EFFICIENT 3D OBJECT DETECTION
    Li, Linye
    Yue, Xiaodong
    Xu, Zhikang
    Xie, Shaorong
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3190 - 3194
  • [25] Viewpoint-independent object class detection using 3D feature maps
    Liebelt, Joerg
    Schmid, Cordelia
    Schertler, Klaus
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2118 - +
  • [26] Object Detection in 3D Coral Ecosystem Maps from Multiple Image Sequences
    Bhandarkar, Suchendra M.
    Kathirvelu, Sushanth
    Hopkinson, Brian M.
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4637 - 4643
  • [27] 3D Object Detection with Pointformer
    Pan, Xuran
    Xia, Zhuofan
    Song, Shiji
    Li, Li Erran
    Huang, Gao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7459 - 7468
  • [28] A survey of 3D object detection
    Wei Liang
    Pengfei Xu
    Ling Guo
    Heng Bai
    Yang Zhou
    Feng Chen
    Multimedia Tools and Applications, 2021, 80 : 29617 - 29641
  • [29] A survey of 3D object detection
    Liang, Wei
    Xu, Pengfei
    Guo, Ling
    Bai, Heng
    Zhou, Yang
    Chen, Feng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29617 - 29641
  • [30] SparseFusion3D: Sparse Sensor Fusion for 3D Object Detection by Radar and Camera in Environmental Perception
    Yu, Zedong
    Wan, Weibing
    Ren, Maiyu
    Zheng, Xiuyuan
    Fang, Zhijun
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1524 - 1536