REFLACX, a dataset of reports and eye-tracking data for localization of abnormalities in chest x-rays

被引:18
|
作者
Bigolin Lanfredi, Ricardo [1 ]
Zhang, Mingyuan [2 ]
Auffermann, William F. [3 ]
Chan, Jessica [3 ]
Duong, Phuong-Anh T. [3 ]
Srikumar, Vivek [4 ]
Drew, Trafton [5 ]
Schroeder, Joyce D. [3 ]
Tasdizen, Tolga [1 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, 72 S Cent Campus Dr,Room 3750, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Populat Hlth Sci, 295 Chipeta Way,Williams Bldg,Room 1N410, Salt Lake City, UT 84108 USA
[3] Univ Utah, Dept Radiol & Imaging Sci, 30 North 1900 East 1A071, Salt Lake City, UT 84132 USA
[4] Univ Utah, Sch Comp, Room 3190,50 Cent Campus Dr, Salt Lake City, UT 84112 USA
[5] Univ Utah, Dept Psychol, 380 S 1530 E Beh S 502, Salt Lake City, UT 84112 USA
基金
美国国家卫生研究院;
关键词
CLASSIFICATION; RADIOGRAPH; CANCER;
D O I
10.1038/s41597-022-01441-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning has shown recent success in classifying anomalies in chest x-rays, but datasets are still small compared to natural image datasets. Supervision of abnormality localization has been shown to improve trained models, partially compensating for dataset sizes. However, explicitly labeling these anomalies requires an expert and is very time-consuming. We propose a potentially scalable method for collecting implicit localization data using an eye tracker to capture gaze locations and a microphone to capture a dictation of a report, imitating the setup of a reading room. The resulting REFLACX (Reports and Eye-Tracking Data for Localization of Abnormalities in Chest X-rays) dataset was labeled across five radiologists and contains 3,032 synchronized sets of eye-tracking data and timestamped report transcriptions for 2,616 chest x-rays from the MIMIC-CXR dataset. We also provide auxiliary annotations, including bounding boxes around lungs and heart and validation labels consisting of ellipses localizing abnormalities and image-level labels. Furthermore, a small subset of the data contains readings from all radiologists, allowing for the calculation of inter-rater scores.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] How do general practitioners respond to reports of abnormal chest X-rays?
    Lim, WS
    Macfarlane, JT
    Deegan, PC
    Manhire, A
    Holmes, WF
    Baldwin, DR
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 1999, 92 (09) : 446 - 449
  • [22] VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations
    Ha Q. Nguyen
    Khanh Lam
    Linh T. Le
    Hieu H. Pham
    Dat Q. Tran
    Dung B. Nguyen
    Dung D. Le
    Chi M. Pham
    Hang T. T. Tong
    Diep H. Dinh
    Cuong D. Do
    Luu T. Doan
    Cuong N. Nguyen
    Binh T. Nguyen
    Que V. Nguyen
    Au D. Hoang
    Hien N. Phan
    Anh T. Nguyen
    Phuong H. Ho
    Dat T. Ngo
    Nghia T. Nguyen
    Nhan T. Nguyen
    Minh Dao
    Van Vu
    Scientific Data, 9
  • [23] VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations
    Nguyen, Ha Q.
    Lam, Khanh
    Le, Linh T.
    Pham, Hieu H.
    Tran, Dat Q.
    Nguyen, Dung B.
    Le, Dung D.
    Pham, Chi M.
    Tong, Hang T. T.
    Dinh, Diep H.
    Do, Cuong D.
    Doan, Luu T.
    Nguyen, Cuong N.
    Nguyen, Binh T.
    Nguyen, Que V.
    Hoang, Au D.
    Phan, Hien N.
    Nguyen, Anh T.
    Ho, Phuong H.
    Ngo, Dat T.
    Nguyen, Nghia T.
    Nguyen, Nhan T.
    Dao, Minh
    Vu, Van
    SCIENTIFIC DATA, 2022, 9 (01)
  • [24] Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models
    Guo, Ruihua
    Passi, Kalpdrum
    Jain, Chakresh Kumar
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [25] Deep learning improves physician accuracy in the comprehensive detection of abnormalities on chest X-rays
    Anderson, Pamela G.
    Tarder-Stoll, Hannah
    Alpaslan, Mehmet
    Keathley, Nora
    Levin, David L.
    Venkatesh, Srivas
    Bartel, Elliot
    Sicular, Serge
    Howell, Scott
    Lindsey, Robert V.
    Jones, Rebecca M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] NEW ABNORMALITIES ON CHEST X-RAYS ORDERED BY TRIAGE NURSES IN A VA ADMISSIONS AREA
    BUTCHER, BL
    NICHOL, KL
    DAWSON, NV
    LOFGREN, RP
    PARENTI, CM
    CLINICAL RESEARCH, 1988, 36 (06): : A909 - A909
  • [27] Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays
    Alexandros Karargyris
    Jenifer Siegelman
    Dimitris Tzortzis
    Stefan Jaeger
    Sema Candemir
    Zhiyun Xue
    K. C. Santosh
    Szilárd Vajda
    Sameer Antani
    Les Folio
    George R. Thoma
    International Journal of Computer Assisted Radiology and Surgery, 2016, 11 : 99 - 106
  • [28] Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays
    Karargyris, Alexandros
    Siegelman, Jenifer
    Tzortzis, Dimitris
    Jaeger, Stefan
    Candemir, Sema
    Xue, Zhiyun
    Santosh, K. C.
    Vajda, Szilard
    Antani, Sameer
    Folio, Les
    Thoma, George R.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (01) : 99 - 106
  • [29] 2 CASE REPORTS OF HAMMAN-RICH SYNDROME WITH NORMAL CHEST X-RAYS
    RENZI, G
    BETTEZ, P
    UNION MEDICALE DU CANADA, 1975, 104 (01): : 60 - 64
  • [30] Evaluating diagnostic content of AI-generated radiology reports of chest X-rays
    Babar, Zaheer
    van Laarhoven, Twan
    Zanzotto, Fabio Massimo
    Marchiori, Elena
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 116 (116)