CRISPR/Cas9 genome editing in wheat

被引:160
|
作者
Kim, Dongjin [1 ]
Alptekin, Burcu [1 ]
Budak, Hikmet [1 ]
机构
[1] Montana State Univ, Dept Plant Sci & Plant Pathol, Cereal Genom Lab, Bozeman, MT 59717 USA
关键词
Wheat; Genome editing; CRISPR/Cas9; TaDREB2; TaERF3; TRANSCRIPTION FACTORS; ABIOTIC STRESS; GENE; EXPRESSION; MUTATIONS; TOLERANCE; SYSTEM; RICE;
D O I
10.1007/s10142-017-0572-x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome editing has been a long-term challenge for molecular biology research, particularly for plants possess complex genome. The recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a versatile tool for genome editing which enables editing of multiple genes based on the guidance of small RNAs. Even though the efficiency of CRISPR/Cas9 system has been shown with several studies from diploid plants, its application remains a challenge for plants with polyploid and complex genome. Here, we applied CRISPR/Cas9 genome editing system in wheat protoplast to conduct the targeted editing of stress-responsive transcription factor genes, wheat dehydration responsive element binding protein 2 (TaDREB2) and wheat ethylene responsive factor 3 (TaERF3). Targeted genome editing of TaDREB2 and TaERF3 was achieved with transient expression of small guide RNA and Cas9 protein in wheat protoplast. The effectiveness of mutagenesis in wheat protoplast was confirmed with restriction enzyme digestion assay, T7 endonuclease assay, and sequencing. Furthermore, several off-target regions for designed sgRNAs were analyzed, and the specificity of genome editing was confirmed with amplicon sequencing. Overall results suggested that CRISPR/Cas9 genome editing system can easily be established on wheat protoplast and it has a huge potentiality for targeted manipulation of wheat genome for crop improvement purposes.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 50 条
  • [31] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Nagaraju, Shilpa
    Davies, Naomi Kathleen
    Walker, David Jeffrey Fraser
    Kopke, Michael
    Simpson, Sean Dennis
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [32] CRISPR/Cas9 genome editing of RDEB mutation hotspot
    Naso, G.
    Petrova, A.
    Qasim, W.
    [J]. HUMAN GENE THERAPY, 2019, 30 (02) : A8 - A8
  • [33] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [34] CRISPR/Cas9 for genome editing: progress, implications and challenges
    Zhang, Feng
    Wen, Yan
    Guo, Xiong
    [J]. HUMAN MOLECULAR GENETICS, 2014, 23 : R40 - R46
  • [35] Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing
    Su, Liuru
    Shi, Chenggang
    Huang, Xin
    Wang, Yiquan
    Li, Guang
    [J]. GENES, 2020, 11 (11) : 1 - 9
  • [36] Editing the genome of Aphanomyces invadans using CRISPR/Cas9
    Majeed, Muhammad
    Soliman, Hatem
    Kumar, Gokhlesh
    El-Matbouli, Mansour
    Saleh, Mona
    [J]. PARASITES & VECTORS, 2018, 11
  • [37] Progresses of CRISPR/Cas9 genome editing in forage crops
    Haq, Syed Inzimam Ul
    Zheng, Dianfeng
    Feng, Naijie
    Jiang, Xingyu
    Qiao, Feng
    He, Jin-Sheng
    Qiu, Quan-Sheng
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2022, 279
  • [38] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Chadwick, Alexandra C.
    Musunuru, Kiran
    [J]. CURRENT ATHEROSCLEROSIS REPORTS, 2017, 19 (07)
  • [39] Editing the genome of Aphanomyces invadans using CRISPR/Cas9
    Muhammad Majeed
    Hatem Soliman
    Gokhlesh Kumar
    Mansour El-Matbouli
    Mona Saleh
    [J]. Parasites & Vectors, 11
  • [40] Expanding the Range of CRISPR/Cas9 Genome Editing in Rice
    Hu, Xixun
    Wang, Chun
    Fu, Yaping
    Liu, Qing
    Jiao, Xiaozhen
    Wang, Kejian
    [J]. MOLECULAR PLANT, 2016, 9 (06) : 943 - 945