The concept of duality for measure projections of convex bodies

被引:37
|
作者
Artstein-Avidan, Shiri [1 ]
Milman, Vitali [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
duality; convexity; s-concavity;
D O I
10.1016/j.jfa.2007.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an involution T on some class of functions on R-n, which reverses order (meaning that if f <= g then T f >= T g) has, often, a very specific form, actually essentially unique. It is done in this paper for the class of s-concave functions, for which this unique formula is derived. These functions are, for integer s, exactly marginals of convex bodies of dimension n + s. This understanding is also extended and discussed for other classes of functions, and represents from our point of view the abstract description of the concept of duality. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2648 / 2666
页数:19
相关论文
共 50 条
  • [22] Distribution functions of sections and projections of convex bodies
    Kim, Jaegil
    Yaskin, Vladyslav
    Zvavitch, Artem
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 52 - 72
  • [23] ALMOST ELLIPSOIDAL SECTIONS AND PROJECTIONS OF CONVEX BODIES
    LARMAN, DG
    MANI, P
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAY) : 529 - 546
  • [24] Stable Determination of Convex Bodies From Projections
    Rolf Schneider
    Monatshefte für Mathematik, 2007, 150 : 241 - 247
  • [25] Stable determination of convex bodies from projections
    Schneider, Rolf
    MONATSHEFTE FUR MATHEMATIK, 2007, 150 (03): : 241 - 247
  • [26] Inequalities for the Surface Area of Projections of Convex Bodies
    Giannopoulos, Apostolos
    Koldobsky, Alexander
    Valettas, Petros
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (04): : 804 - 823
  • [27] Gaussian measure of sections of convex bodies
    Zvavitch, A
    ADVANCES IN MATHEMATICS, 2004, 188 (01) : 124 - 136
  • [28] Convex Analysis in Normed Spaces and Metric Projections onto Convex Bodies
    Balestro, Vitor
    Martini, Horst
    Teixeira, Ralph
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (04) : 1223 - 1248
  • [29] ESTIMATING THE SIZES OF CONVEX-BODIES FROM PROJECTIONS
    BETKE, U
    MCMULLEN, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 27 (JUN): : 525 - 538
  • [30] Geometry of families of random projections of symmetric convex bodies
    Mankiewicz, P
    Tomczak-Jaegermann, N
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (06) : 1282 - 1326