The concept of duality for measure projections of convex bodies

被引:37
|
作者
Artstein-Avidan, Shiri [1 ]
Milman, Vitali [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
duality; convexity; s-concavity;
D O I
10.1016/j.jfa.2007.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an involution T on some class of functions on R-n, which reverses order (meaning that if f <= g then T f >= T g) has, often, a very specific form, actually essentially unique. It is done in this paper for the class of s-concave functions, for which this unique formula is derived. These functions are, for integer s, exactly marginals of convex bodies of dimension n + s. This understanding is also extended and discussed for other classes of functions, and represents from our point of view the abstract description of the concept of duality. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2648 / 2666
页数:19
相关论文
共 50 条
  • [1] DUALITY OF CONVEX-BODIES
    MOSZYNSKA, M
    ZUKOWSKI, T
    GEOMETRIAE DEDICATA, 1995, 58 (02) : 161 - 173
  • [2] Volumes and projections of convex bodies
    Gronchi, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1A : 121 - 124
  • [3] A characterization of the duality mapping for convex bodies
    Károly J. Böröczky
    Rolf Schneider
    Geometric and Functional Analysis, 2008, 18 : 657 - 667
  • [4] A characterization of the duality mapping for convex bodies
    Boroczky, Karoly J.
    Schneider, Rolf
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (03) : 657 - 667
  • [5] On the Determination of Convex Bodies by Translates of Their Projections
    H. Groemer
    Geometriae Dedicata, 1997, 66 : 265 - 279
  • [6] Sections and projections of nested convex bodies
    I. González-García
    J. Jerónimo-Castro
    E. Morales-Amaya
    D. J. Verdusco-Hernández
    Aequationes mathematicae, 2022, 96 : 885 - 900
  • [7] Sections and projections of nested convex bodies
    Gonzalez-Garcia, I
    Jeronimo-Castro, J.
    Morales-Amaya, E.
    Verdusco-Hernandez, D. J.
    AEQUATIONES MATHEMATICAE, 2022, 96 (04) : 885 - 900
  • [8] On the volume ratio of projections of convex bodies
    Galicer, Daniel
    Litvak, Alexander E.
    Merzbacher, Mariano
    Pinasco, Damian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (03)
  • [9] Projections of convex bodies and the fourier transform
    Alexander Koldobsky
    Dmitry Ryabogin
    Artem Zvavitch
    Israel Journal of Mathematics, 2004, 139 : 361 - 380
  • [10] Stability Inequalities for Projections of Convex Bodies
    Koldobsky, Alexander
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (01) : 152 - 163