Contribution of periodic diffractive geodesics

被引:15
|
作者
Hillairet, L [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon, France
关键词
wave-trace; conical singularities; polygonal billiard;
D O I
10.1016/j.jfa.2005.04.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On an euclidean surface with conical singularities, the wave-trace is expected to be singular at L where L is the length of some diffractive periodic geodesic. In this paper, we compute the leading term of the singularity brought to the trace by a regular, isolated diffractive geodesic and by a regular family of periodic non-diffractive geodesic. These results can be applied to polygons. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 89
页数:42
相关论文
共 50 条
  • [21] Finsler geodesics, periodic Reeb orbits, and open books
    Dörner M.
    Geiges H.
    Zehmisch K.
    European Journal of Mathematics, 2017, 3 (4) : 1058 - 1075
  • [22] Geodesics in static spacetimes and t-periodic trajectories
    Sánchez, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (06) : 677 - 686
  • [23] Typical properties of periodic Teichmuller geodesics: Lyapunov exponents
    Hamenstaedt, Ursula
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (02) : 556 - 584
  • [24] Perturbed closed geodesics are periodic orbits: Index and transversality
    Weber, J
    MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (01) : 45 - 82
  • [25] Perturbed closed geodesics are periodic orbits: Index and transversality
    Joa Weber
    Mathematische Zeitschrift, 2002, 241 : 45 - 81
  • [26] Diffractive Guiding of Waves by a Periodic Array of Slits
    Weisman, Dror
    Carmesin, C. Moritz
    Rozenman, Georgi Gary
    Efremov, Maxim A.
    Shemer, Lev
    Schleich, Wolfgang P.
    Arie, Ady
    PHYSICAL REVIEW LETTERS, 2021, 127 (01)
  • [27] Diffractive contribution to the elasticity and to the nucleonic flux in the atmosphere
    Bellandi, J
    Godoi, AL
    Covolan, RJM
    Montanha, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1997, 23 (01) : 125 - 134
  • [28] GEODESICS ON S-2 AND PERIODIC POINTS OF ANNULUS HOMEOMORPHISMS
    FRANKS, J
    INVENTIONES MATHEMATICAE, 1992, 108 (02) : 403 - 418
  • [29] Spectrum of the Laplace operator and periodic geodesics:: Thirty years after
    de Verdiere, Yves Colin
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (07) : 2429 - 2463
  • [30] Homotopy groups and periodic geodesics of closed 4-manifolds
    Basu, Samik
    Basu, Somnath
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (08)