Mechanistic insights into water transport in polymer electrolyte fuel cells with a variation of cell temperature and relative humidity of inlet gas elucidated by operando synchrotron X-ray radiography

被引:27
|
作者
Kato, Akihiko [1 ]
Kato, Satoru [1 ]
Yamaguchi, Satoshi [1 ]
Suzuki, Takahisa [1 ]
Nagai, Yasutaka [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
关键词
Polymer electrolyte fuel cells; Water transport; Operando; Synchrotron X-ray; Radiography; LIQUID-WATER; DIFFUSION LAYERS; IN-SITU; 2-PHASE FLOW; SATURATION; MANAGEMENT; MODEL; DISTRIBUTIONS; NAFION; PEMFC;
D O I
10.1016/j.jpowsour.2021.230951
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excessive liquid water in the gas diffusion layer (GDL) of polymer electrolyte fuel cells (PEFCs) is known to degrade their performance. PEFCs for automotive applications are required to work over a broad temperature range and over a wide range of relative humidity (RH) levels of the gas in their channels. Time-resolved operando synchrotron X-ray radiography was used to understand the effect of temperature and RH on the condensation and transport of water in PEFCs. The results show that the type of condensation and transport to the channel can be classified into four categories on the basis of the transient behavior of the liquid water distribution. The first category is concurrent liquid and vapor transport, the second is liquid-transport dominated, the third is vaporonly transport, and the fourth is accumulation-only near the ribs. We propose the possibility of oversaturation in the GDL, which is usually not considered in numerical calculations of the water distribution in PEFCs. We also show the possibility that experimental results are inconsistent with continuous water distribution in the in-plane direction, which is predicted under the assumption that the GDL structure is uniform and that capillary pressure transports liquid water in the GDL.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] In operando synchrotron X-ray radiography studies of polymer electrolyte membrane water electrolyzers
    Hoeh, Michael A.
    Arlt, Tobias
    Manke, Ingo
    Banhart, John
    Fritz, David L.
    Maier, Wiebke
    Lehnert, Werner
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 55 : 55 - 59
  • [2] Roles of Photon Scattering in Synchrotron X-ray Radiography of In Operando Visualizations of the Polymer Electrolyte Membrane Fuel Cell
    Ge, N.
    Chevalier, S.
    Hinebaugh, J.
    George, M. G.
    Lee, J.
    Banerjee, R.
    Liu, H.
    Muirhead, D.
    Shrestha, P.
    Bazylak, A.
    POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 261 - 274
  • [3] In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells
    Maier, Wiebke
    Arlt, Tobias
    Wannek, Christoph
    Manke, Ingo
    Riesemeier, Heinrich
    Krueger, Philipp
    Scholta, Joachim
    Lehnert, Werner
    Banhart, John
    Stolten, Detlef
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) : 1436 - 1438
  • [4] Identifying in operando changes in membrane hydration in polymer electrolyte membrane fuel cells using synchrotron X-ray radiography
    Banerjee, R.
    Ge, N.
    Han, C.
    Lee, J.
    George, M. G.
    Liu, H.
    Muirhead, D.
    Shrestha, P.
    Bazylak, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (20) : 9757 - 9769
  • [5] Transient Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Observed through In-Operando Synchrotron X-ray Radiography
    Banerjee, Rupak
    Ge, Nan
    Lee, Jongmin
    George, Michael G.
    Chevalier, Stephane
    Liu, Hang
    Shrestha, Pranay
    Muirhead, Daniel
    Bazylak, Aimy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : F154 - F162
  • [6] Operando X-ray radiography of liquid water distribution in 100 mm polymer electrolyte fuel cell channels
    Kato, Akihiko
    Yamaguchi, Satoshi
    Yoshimune, Wataru
    Isegawa, Kazuhisa
    Maeda, Masashi
    Hayashi, Daisuke
    Suzuki, Takahisa
    Kato, Satoru
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 165
  • [7] Dependence of vapor and liquid water removal on cross-flow in polymer electrolyte fuel cell investigated by operando synchrotron X-ray radiography
    Kato, Akihiko
    Kato, Satoru
    Yamaguchi, Satoshi
    Suzuki, Takahisa
    Nagai, Yasutaka
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 (0B) : 1218 - 1227
  • [8] Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers: Mass Transport Resistance and Liquid Water Accumulation at Limiting Current Density with in operando Synchrotron X-ray Radiography
    George, Michael G.
    Liu, Hang
    Banerjee, Rupak
    Ge, Nan
    Shrestha, Pranay
    Muirhead, Dan
    Lee, Jongmin
    Chevalier, Stephane
    Hinebaugh, James
    Messerschmidt, Matthias
    Zeis, Roswitha
    Scholta, Joachim
    Bazylak, Aimy
    POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 89 - 100
  • [9] Liquid Water Visualization in the Pt-Loading Cathode Catalyst Layers of Polymer Electrolyte Fuel Cells Using Operando Synchrotron X-ray Radiography
    Yoshimune, Wataru
    Kato, Akihiko
    Hayakawa, Tetsuichiro
    Yamaguchi, Satoshi
    Kato, Satoru
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (10):
  • [10] Condensation model to reproduce experimentally observed liquid water distributions in gas diffusion layer for polymer electrolyte fuel cells with variation of cell temperature and relative humidity of inlet gas
    Inagaki, Masahide
    Kato, Akihiko
    Kato, Satoru
    Suzuki, Takahisa
    Yamaguchi, Satoshi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 14 - 27