Deep learning and multilingual sentiment analysis on social media data: An overview

被引:61
|
作者
Aguero-Torales, Marvin M. [1 ]
Salas, Jose I. Abreu [2 ]
Lopez-Herrera, Antonio G. [1 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Calle Daniel Saucedo Aranda S-N, Granada 18071, Spain
[2] Univ Alicante, Univ Inst Comp Res, Carretera San Vicente Raspeig S-N, Valencia, Spain
关键词
Sentiment analysis; Multilingual; Cross-lingual; Code-switching; Deep learning; Natural language processing (NLP); Social media;
D O I
10.1016/j.asoc.2021.107373
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the underlying ideas and commonalities behind the different solutions to achieve multilingual sentiment analysis. Interesting findings of our research are (i) the shift of research interest to cross-lingual and code-switching approaches, (ii) the apparent stagnation of the less complex architectures derived from a backbone featuring an embedding layer, a feature extractor based on a single CNN or LSTM and a classifier, (iii) the lack of approaches tackling multilingual aspect-based sentiment analysis through deep learning, and, surprisingly, (iv) the lack of more complex architectures such as the transformers-based, despite results suggest the more difficult tasks requires more elaborated architectures. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Interpretable Sentiment Analysis based on Deep Learning: An overview
    Jawale, Shila
    Sawarkar, S. D.
    [J]. 2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2020, : 65 - 70
  • [22] Sentiment analysis using deep learning approaches:an overview
    Olivier HABIMANA
    Yuhua LI
    Ruixuan LI
    Xiwu GU
    Ge YU
    [J]. Science China(Information Sciences), 2020, 63 (01) : 21 - 56
  • [23] Sentiment analysis using deep learning approaches: an overview
    Habimana, Olivier
    Li, Yuhua
    Li, Ruixuan
    Gu, Xiwu
    Yu, Ge
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (01)
  • [24] Sentiment analysis using deep learning approaches: an overview
    Olivier Habimana
    Yuhua Li
    Ruixuan Li
    Xiwu Gu
    Ge Yu
    [J]. Science China Information Sciences, 2020, 63
  • [25] Sentiment Analysis of Cyberbullying Data in Social Media
    Pujari, Pradeep
    Susmitha, Arvapalli Sai
    [J]. arXiv,
  • [26] A Study on Sentiment Analysis on Social Media Data
    Manasa, K. N.
    Padma, M. C.
    [J]. EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY, ICERECT 2018, 2019, 545 : 661 - 667
  • [27] Deep learning based sentiment analysis and offensive language identification on multilingual code-mixed data
    Shanmugavadivel, Kogilavani
    Sathishkumar, V. E.
    Raja, Sandhiya
    Lingaiah, T. Bheema
    Neelakandan, S.
    Subramanian, Malliga
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [28] Deep learning based sentiment analysis and offensive language identification on multilingual code-mixed data
    Kogilavani Shanmugavadivel
    V. E. Sathishkumar
    Sandhiya Raja
    T. Bheema Lingaiah
    S. Neelakandan
    Malliga Subramanian
    [J]. Scientific Reports, 12
  • [29] Sentiment analysis in multilingual context: Comparative analysis of machine learning and hybrid deep learning models
    Das, Rajesh Kumar
    Islam, Mirajul
    Hasan, Md Mahmudul
    Razia, Sultana
    Hassan, Mocksidul
    Khushbu, Sharun Akter
    [J]. HELIYON, 2023, 9 (09)
  • [30] Visual and Textual Sentiment Analysis of Daily News Social Media Images by Deep Learning
    Felicetti, Andrea
    Martini, Massimo
    Paolanti, Marina
    Pierdicca, Roberto
    Frontoni, Emanuele
    Zingaretti, Primo
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT I, 2019, 11751 : 477 - 487