Riemannian joint dimensionality reduction and dictionary learning on symmetric positive definite manifolds

被引:0
|
作者
Kasai, Hiroyuki [1 ]
Mishra, Bamdev [2 ]
机构
[1] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo, Japan
[2] Microsoft, Hyderabad, India
关键词
dictionary leaning; dimensionality reduction; SPD matrix; Riemannian manifold; K-SVD; OPTIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dictionary leaning (DL) and dimensionality reduction (DR) are powerful tools to analyze high-dimensional noisy signals. This paper presents a proposal of a novel Riemannian joint dimensionality reduction and dictionary learning (R-JDRDL) on symmetric positive definite (SPD) manifolds for classification tasks. The joint learning considers the interaction between dimensionality reduction and dictionary learning procedures by connecting them into a unified framework. We exploit a Riemannian optimization framework for solving DL and DR problems jointly. Finally, we demonstrate that the proposed R-JDRDL outperforms existing state-of-the-arts algorithms when used for image classification tasks.
引用
收藏
页码:2010 / 2014
页数:5
相关论文
共 50 条
  • [21] Sparse representation based classification with intra-class variation dictionary on symmetric positive definite manifolds
    Kasai, Hiroyuki
    Yoshikawa, Kohei
    2017 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2017, : 255 - 258
  • [22] Convex class model on symmetric positive definite manifolds
    Zhao, Kun
    Wiliem, Arnold
    Chen, Shaokang
    Lovell, Brian C.
    IMAGE AND VISION COMPUTING, 2019, 87 : 57 - 67
  • [23] Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices
    Said, Salem
    Bombrun, Lionel
    Berthoumieu, Yannick
    Manton, Jonathan H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2153 - 2170
  • [24] Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices
    Jayasumana, Sadeep
    Hartley, Richard
    Salzmann, Mathieu
    Li, Hongdong
    Harandi, Mehrtash
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 73 - 80
  • [25] Riemannian Laplace Distribution on the Space of Symmetric Positive Definite Matrices
    Hajri, Hatem
    Ilea, Ioana
    Said, Salem
    Bombrun, Lionel
    Berthoumieu, Yannick
    ENTROPY, 2016, 18 (03)
  • [26] Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval
    Sra, Suvrit
    Cherian, Anoop
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 318 - 332
  • [27] Positive Semi-definite Embedding for Dimensionality Reduction and
    Fanuel, Michael
    Aspeel, Antoine
    Delvenne, Jean -Charles
    Suykens, Johan A. K.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (01): : 153 - 178
  • [28] Tensor Dictionary Learning for Positive Definite Matrices
    Sivalingam, Ravishankar
    Boley, Daniel
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 4592 - 4601
  • [29] Riemannian manifold learning for nonlinear dimensionality reduction
    Lin, Tony
    Zha, Hongbin
    Lee, Sang Uk
    COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 44 - 55
  • [30] Positive Definite Dictionary Learning for Region Covariances
    Sivalingam, Ravishankar
    Boley, Daniel
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1013 - 1019