The chromatic number of almost stable Kneser hypergraphs

被引:30
|
作者
Meunier, Frederic [1 ]
机构
[1] Univ Paris Est, CERMICS, ENPC, F-77455 Marne La Vallee 2, France
关键词
Chromatic number; Combinatorial topology; Stable Kneser hypergraphs; Z(p)-Tucker lemma;
D O I
10.1016/j.jcta.2011.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V (n, k, s) be the set of k-subsets S of [n] such that for all i, j is an element of S, we have vertical bar i - j vertical bar >= s. We define almost s-stable Kneser hypergraph KG(r)([n]k)(s-stab)(similar to) to be the r-uniform hypergraph whose vertex set is V (n, k, s) and whose edges are the r-tuples of disjoint elements of V (n, k, s). With the help of a Z(p)-Tucker lemma, we prove that, for p prime and for any n >= kp, the chromatic number of almost 2-stable Kneser hypergraphs KG(p)([n]k)(s-stab)(similar to) is equal to the chromatic number of the usual Kneser hypergraphs KG(p)([n]k), namely that it is equal to inverted right perpendicular n-(k-1)p/p-1 inverted left perpendicular. Related results are also proved, in particular, a short combinatorial proof of Schrijver's theorem (about the chromatic number of stable Kneser graphs) and some evidences are given for a new conjecture concerning the chromatic number of usual s-stable r-uniform Kneser hypergraphs. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1820 / 1828
页数:9
相关论文
共 50 条
  • [31] On the chromatic number of a random subgraph of the Kneser graph
    Kiselev, S. G.
    Raigorodskii, A. M.
    [J]. DOKLADY MATHEMATICS, 2017, 96 (02) : 475 - +
  • [32] ON THE CHROMATIC NUMBER OF THE GENERAL KNESER-GRAPH
    FRANKL, P
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (02) : 217 - 220
  • [33] On the b-chromatic number of Kneser graphs
    Hajiabolhassan, Hossein
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (03) : 232 - 234
  • [34] On the chromatic number of a random subgraph of the Kneser graph
    S. G. Kiselev
    A. M. Raigorodskii
    [J]. Doklady Mathematics, 2017, 96 : 475 - 476
  • [35] STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODYM PROPERTY
    Alon, Noga
    Drewnowski, Lech
    Luczak, Tomasz
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (02) : 467 - 471
  • [36] Chromatic-Choosability of Hypergraphs with High Chromatic Number
    Wang, Wei
    Qian, Jianguo
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [37] Chromatic Ramsey number of acyclic hypergraphs
    Gyarfas, Andras
    Riasanovsky, Alexander W. N.
    Sherman-Bennett, Melissa U.
    [J]. DISCRETE MATHEMATICS, 2017, 340 (03) : 373 - 378
  • [38] Approximability of the upper chromatic number of hypergraphs
    Bujtas, Csilla
    Tuza, Zsolt
    [J]. DISCRETE MATHEMATICS, 2015, 338 (10) : 1714 - 1721
  • [39] On the Strong Chromatic Number of Random Hypergraphs
    T. G. Matveeva
    A. E. Khuzieva
    D. A. Shabanov
    [J]. Doklady Mathematics, 2022, 105 : 31 - 34
  • [40] On The Chromatic Number of Some Geometric Hypergraphs
    Smorodinsky, Shakhar
    [J]. PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 316 - 323