Approach to COVID-19 time series data using deep learning and spectral analysis methods

被引:13
|
作者
Oshinubi, Kayode [1 ]
Amakor, Augustina [2 ]
Peter, Olumuyiwa James [3 ]
Rachdi, Mustapha [1 ]
Demongeot, Jacques [1 ]
机构
[1] Univ Grenoble Alpes UGA, Fac Med, Lab AGEIS EA 7407, Team Tools E Gnosis Med, F-38700 La Tronche, France
[2] Grenoble INP, Ind & Appl Math Unit, Ensimag, Grenoble, France
[3] Univ Ilorin, Dept Math, Kwara State, Nigeria
来源
AIMS BIOENGINEERING | 2022年 / 9卷 / 01期
关键词
COVID-19; deep learning; data analysis; spectral analysis; neural network; PREDICTION; MODEL;
D O I
10.3934/bioeng.2022001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This article focuses on the application of deep learning and spectral analysis to epidemiology time series data, which has recently piqued the interest of some researchers. The COVID-19 virus is still mutating, particularly the delta and omicron variants, which are known for their high level of contagiousness, but policymakers and governments are resolute in combating the pandemic's spread through a recent massive vaccination campaign of their population. We used extreme machine learning (ELM), multilayer perceptron (MLP), long short-term neural network (LSTM), gated recurrent unit (GRU), convolution neural network (CNN) and deep neural network (DNN) methods on time series data from the start of the pandemic in France, Russia, Turkey, India, United states of America (USA), Brazil and United Kingdom (UK) until September 3, 2021 to predict the daily new cases and daily deaths at different waves of the pandemic in countries considered while using root mean square error (RMSE) and relative root mean square error (rRMSE) to measure the performance of these methods. We used the spectral analysis method to convert time (days) to frequency in order to analyze the peaks of frequency and periodicity of the time series data. We also forecasted the future pandemic evolution by using ELM, MLP, and spectral analysis. Moreover, MLP achieved best performance for both daily new cases and deaths based on the evaluation metrics used. Furthermore, we discovered that errors for daily deaths are much lower than those for daily new cases. While the performance of models varies, prediction and forecasting during the period of vaccination and recent cases confirm the pandemic's prevalence level in the countries under consideration. Finally, some of the peaks observed in the time series data correspond with the proven pattern of weekly peaks that is unique to the COVID-19 time series data.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] Detection of COVID-19 using deep learning techniques and classification methods
    Oguz, Cinare
    Yaganoglu, Mete
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [22] Deep-COVID: Detection and Analysis of COVID-19 Outcomes Using Deep Learning
    Khalil, Muhammad Ibrahim
    Rehman, Saif Ur
    Alhajlah, Mousa
    Mahmood, Awais
    Karamat, Tehmina
    Haneef, Muhammad
    Alhajlah, Ashwaq
    ELECTRONICS, 2022, 11 (22)
  • [23] Prediction and analysis of Covid-19 using the Deep Learning Models
    Indira V.
    Geetha R.
    Umarani S.
    Priyadarshini D.A.
    Research on Biomedical Engineering, 2024, 40 (01) : 183 - 197
  • [24] Voting Regression Model for Covid-19 Time Series Data Analysis
    Chandigarh University, Computer Science and Engineering, Mohali, India
    Proc. - Int. Conf. Adv. Comput., Commun. Control Netw., ICAC3N, (2041-2046):
  • [25] Epidemiological forecasting of COVID-19 infection using deep learning approach
    Blagojevic, Andela
    Sustersic, Tijana
    Filipovic, Nenad
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [26] Deep learning with robustness to missing data: A novel approach to the detection of COVID-19
    Calli, Erdi
    Murphy, Keelin
    Kurstjens, Steef
    Samson, Tijs
    Herpers, Robert
    Smits, Henk
    Rutten, Matthieu
    van Ginneken, Bram
    PLOS ONE, 2021, 16 (07):
  • [27] Deep Learning and TextBlob Based Sentiment Analysis for Coronavirus (COVID-19) Using Twitter Data
    Chandrasekaran, Ganesh
    Hemanth, Jude
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (01)
  • [28] Time series analysis of COVID-19 cases
    Bhangu, Kamalpreet Singh
    Sandhu, Jasminder
    Sapra, Luxmi
    WORLD JOURNAL OF ENGINEERING, 2022, 19 (01) : 40 - 48
  • [29] A Comparative Study of COVID-19 Detection Using Deep and Machine Learning Methods
    Sheneamer, Abdullah
    Farahat, Hanan
    Hamdi, Ebtehal
    Qahtani, Mona
    Alkhairat, Bashyir
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (03): : 738 - 745
  • [30] Interpreting County-Level COVID-19 Infections using Transformer and Deep Learning Time Series Models
    Islam, Md Khairul
    Liu, Yingzheng
    Erkelens, Andrej
    Daniello, Nick
    Marathe, Aparna
    Fox, Judy
    2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 266 - 277