Maximizing the Differences Between a Monotone DR-Submodular Function and a Linear Function on the Integer Lattice

被引:2
|
作者
Zhang, Zhen-Ning [1 ]
Du, Dong-Lei [2 ]
Ma, Ran [3 ]
Wu, Dan [4 ]
机构
[1] Beijing Univ Technol, Dept Operat Res & Informat Engn, Beijing 100124, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB E3B 9Y2, Canada
[3] Qingdao Univ Technol, Sch Management Engn, Qingdao 266525, Shandong, Peoples R China
[4] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Henan, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Submodular maximization; DR-submodular; Integer lattice; Single-threshold greedy algorithm; Streaming algorithm;
D O I
10.1007/s40305-022-00393-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate the maximization of the differences between a non-negative monotone diminishing return submodular (DR-submodular) function and a nonnegative linear function on the integer lattice. As it is almost unapproximable for maximizing a submodular function without the condition of nonnegative, we provide weak (bifactor) approximation algorithms for this problem in two online settings, respectively. For the unconstrained online model, we combine the ideas of single-threshold greedy, binary search and function scaling to give an efficient algorithm with a 1/2 weak approximation ratio. For the online streaming model subject to a cardinality constraint, we provide a one-pass (3 - root 5 )/2 weak approximation ratio streaming algorithm. Its memory complexity is (k log k/epsilon), and the update time for per element is (log(2) k/epsilon).
引用
收藏
页码:795 / 807
页数:13
相关论文
共 50 条
  • [31] Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint
    Zhenning Zhang
    Donglei Du
    Yanjun Jiang
    Chenchen Wu
    [J]. Journal of Global Optimization, 2021, 80 : 595 - 616
  • [32] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhenning Zhang
    Bin Liu
    Yishui Wang
    Dachuan Xu
    Dongmei Zhang
    [J]. Journal of Combinatorial Optimization, 2022, 43 : 1125 - 1148
  • [33] Streaming algorithms for monotone non-submodular function maximization under a knapsack constraint on the integer lattice
    Tan, Jingjing
    Wang, Fengmin
    Ye, Weina
    Zhang, Xiaoqing
    Zhou, Yang
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 937 : 39 - 49
  • [34] On maximizing a monotone k-submodular function subject to a matroid constraint
    Sakaue, Shinsaku
    [J]. DISCRETE OPTIMIZATION, 2017, 23 : 105 - 113
  • [35] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhang, Zhenning
    Liu, Bin
    Wang, Yishui
    Xu, Dachuan
    Zhang, Dongmei
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (05) : 1125 - 1148
  • [36] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION WITH A BOUNDED CURVATURE UNDER A KNAPSACK CONSTRAINT
    Yoshida, Yuichi
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1452 - 1471
  • [37] On maximizing a monotone k-submodular function under a knapsack constraint
    Tang, Zhongzheng
    Wang, Chenhao
    Chan, Hau
    [J]. OPERATIONS RESEARCH LETTERS, 2022, 50 (01) : 28 - 31
  • [38] Fast First-Order Methods for Monotone Strongly DR-Submodular Maximization
    Sadeghi, Omid
    Fazel, Maryam
    [J]. SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA23, 2023, : 169 - 179
  • [39] Profit maximization in social networks and non-monotone DR-submodular maximization
    Gu, Shuyang
    Gao, Chuangen
    Huang, Jun
    Wu, Weili
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 957
  • [40] Non-monotone DR-submodular Maximization over General Convex Sets
    Durr, Christoph
    Nguyen Kim Thang
    Srivastav, Abhinav
    Tible, Leo
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2148 - 2154