VLSI architectures of Daubechies wavelet transforms using algebraic integers

被引:14
|
作者
Wahid, K [1 ]
Dimitrov, V [1 ]
Jullien, G [1 ]
机构
[1] Univ Calgary, Dept Elect & Comp Engn, ATIPS Lab, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
2D Wavelet Transforms; algebraic integers; image compression; VSLI architectures;
D O I
10.1142/S0218126604001982
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Two-Dimensional Wavelet Transforms have proven to be highly effective tools for image analysis. In this paper, we present a VLSI implementation of four- and six-coefficient Daubechies Wavelet Transforms using an algebraic integer encoding representation for the coefficients. The Daubechies filters (DAUB4 and DAUB6) provide excellent spatial and spectral locality, properties which make it useful in image compression. In our algorithm, the algebraic integer representation of the wavelet coefficients provides error-free calculations until the final reconstruction step. This also makes the VLSI architecture simple, multiplication-free and inherently parallel. Compared to other DWT algorithms found in the literature, such as embedded zero-tree, recursive or semi-recursive, linear systolic arrays and conventional fixed-point binary architectures, it has reduced hardware cost, lower power dissipation and optimized data-bus utilization. The architecture is also cascadable for computation of one- or multi-dimensional Daubechies Discrete Wavelet Transforms.
引用
收藏
页码:1251 / 1270
页数:20
相关论文
共 50 条
  • [1] Multiplication-free architecture for daubechies wavelet transforms using algebraic integers
    Wahid, K
    Dimitrov, V
    Jullien, G
    [J]. ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIII, 2003, 5205 : 597 - 606
  • [2] VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers
    Madishetty, Shiva Kumar
    Madanayake, Arjuna
    Cintra, Renato J.
    Dimitrov, Vassil S.
    Mugler, Dale H.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (06) : 1455 - 1468
  • [3] Discrete wavelet transforms using Daubechies wavelet
    Rao, IU
    [J]. IETE JOURNAL OF RESEARCH, 2001, 47 (3-4) : 169 - 171
  • [4] Error-free arithmetic for discrete wavelet transforms using algebraic integers
    Wahid, KA
    Dimitrov, VS
    Jullien, GA
    [J]. 16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2003, : 238 - 244
  • [5] Efficient VLSI suited architectures for discrete wavelet transforms
    Simon, S
    Rieder, P
    Nossek, JA
    [J]. VLSI SIGNAL PROCESSING, IX, 1996, : 388 - 397
  • [6] An Efficient Algorithm for Daubechies Lifting Wavelets Using Algebraic Integers
    Balakrishnan, Pranav
    Hasan, Mehedi
    Wahid, Khan A.
    [J]. CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2014, 37 (03): : 127 - 134
  • [7] An algebraic integer based encoding scheme for implementing Daubechies Discrete Wavelet Transforms
    Wahid, KA
    Dimitrov, VS
    Jullien, GA
    Badawy, W
    [J]. THIRTY-SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS - CONFERENCE RECORD, VOLS 1 AND 2, CONFERENCE RECORD, 2002, : 967 - 971
  • [8] A NOVEL LIFTING ALGORITHM FOR DAUBECHIES WAVELETS USING ALGEBRAIC INTEGERS
    Balakrishnan, Pranav
    Wahid, Khan
    [J]. 2013 26TH ANNUAL IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2013, : 292 - 295
  • [9] Wavelet transforms that map integers to integers
    Calderbank, AR
    Daubechies, I
    Sweldens, W
    Yeo, BL
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (03) : 332 - 369
  • [10] VLSI architectures for lattice structure based orthonormal discrete wavelet transforms
    Denk, TC
    Parhi, KK
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1997, 44 (02): : 129 - 132