APPROXIMATIONS TO EULER'S CONSTANT

被引:0
|
作者
Pilehrood, Kh Hessami [1 ]
Pilehrood, T. Hessami [1 ]
机构
[1] Shahrekord Univ, Fac Basic Sci, Dept Math, Shahrekord, Iran
来源
关键词
Euler's constant; approximation; sequence transformation; convergence acceleration; SEQUENCE TRANSFORMATION; INTEGRAL-COEFFICIENTS; VALUES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a problem of finding good approximations to Euler's constant gamma = lim(n ->infinity)S(n), where S(n) = Sigma(n)(k=1) 1/k - log(n+1), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence S(n) can be significantly improved if S(n) is replaced by linear combinations of S(n) with integer coefficients. In this paper, considering more general linear transformations of the sequence S(n) we establish new accelerating convergence formulae for gamma. Our estimates sharpen and generalize recent Elsner's, Rivoal's and author's results.
引用
收藏
页码:761 / 773
页数:13
相关论文
共 50 条
  • [21] A characterization of Euler's constant
    Alzer, Horst
    EXPOSITIONES MATHEMATICAE, 2013, 31 (04) : 385 - 391
  • [22] Inequalities for Euler's constant
    Hirschhorn, Michael
    MATHEMATICAL GAZETTE, 2012, 96 (535): : 133 - 136
  • [23] APPROXIMATING EULER'S CONSTANT
    Hirschhorn, Michael D.
    FIBONACCI QUARTERLY, 2011, 49 (03): : 243 - 248
  • [24] A generalization of Euler’s constant
    Alina Sîntămărian
    Numerical Algorithms, 2007, 46 : 141 - 151
  • [25] A generalization of Euler's constant
    Sintamarian, Alina
    NUMERICAL ALGORITHMS, 2007, 46 (02) : 141 - 151
  • [26] ON APPROXIMATING EULER'S CONSTANT
    Cringanu, Jenica
    FIBONACCI QUARTERLY, 2014, 52 (04): : 318 - 320
  • [27] The integrals are Euler's constant
    Anglesio, J
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (03): : 278 - 279
  • [28] Gamma: Exploring Euler’s Constant
    Alexanderson G.L.
    The Mathematical Intelligencer, 2005, 27 (1) : 86 - 88
  • [29] On Finite Analogues of Euler's Constant
    Kaneko, Masanobu
    Matsusaka, Toshiki
    Seki, Shin-ichiro
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (02)
  • [30] A matrix representation for Euler's constant, γ
    Kenter, FK
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (05): : 452 - 454