Communication-Efficient and Byzantine-Robust Differentially Private Federated Learning

被引:4
|
作者
Li, Min [1 ]
Xiao, Di [1 ]
Liang, Jia [1 ]
Huang, Hui [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Privacy; Servers; Robustness; Data models; Quantization (signal); Predictive models; Compressed sensing; Parallel compressed sensing; SIGNSGD; Byzantine robustness; communication efficiency; privacy protection;
D O I
10.1109/LCOMM.2022.3180113
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Federated learning, as a novel paradigm of machine learning, is facing a series of challenges such as efficiency, privacy and robustness. The recently proposed EF-DP- SIGNSGD provides theoretical privacy protection for SIGNSGD with majority vote but weakens the capability to resist Byzantine attacks to some extent. To overcome this shortcoming and further greatly improve the communication efficiency, a new method called PCS-DP- SIGNSGD is proposed via using parallel compressed sensing. Simulation and analysis demonstrate that compared with EF-DP- SIGNSGD, PCS-DP- SIGNSGD can match or even improve the accuracy and enjoy stronger Byzantine robustness with 50% to 80% improvement in the uplink communication efficiency.
引用
收藏
页码:1725 / 1729
页数:5
相关论文
共 50 条
  • [21] Byzantine-robust federated learning with ensemble incentive mechanism
    Zhao, Shihai
    Pu, Juncheng
    Fu, Xiaodong
    Liu, Li
    Dai, Fei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 159 : 272 - 283
  • [22] CareFL: Contribution Guided Byzantine-Robust Federated Learning
    Dong, Qihao
    Yang, Shengyuan
    Dai, Zhiyang
    Gao, Yansong
    Wang, Shang
    Cao, Yuan
    Fu, Anmin
    Susilo, Willy
    IEEE Transactions on Information Forensics and Security, 2024, 19 : 9714 - 9729
  • [23] Privacy-preserving Byzantine-robust federated learning
    Ma, Xu
    Zhou, Yuqing
    Wang, Laihua
    Miao, Meixia
    COMPUTER STANDARDS & INTERFACES, 2022, 80
  • [24] Towards Federated Learning with Byzantine-Robust Client Weighting
    Portnoy, Amit
    Tirosh, Yoav
    Hendler, Danny
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [25] Privacy-Preserving and Byzantine-Robust Federated Learning
    Dong, Caiqin
    Weng, Jian
    Li, Ming
    Liu, Jia-Nan
    Liu, Zhiquan
    Cheng, Yudan
    Yu, Shui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (02) : 889 - 904
  • [26] BOBA: Byzantine-Robust Federated Learning with Label Skewness
    Bao, Wenxuan
    Wu, Jun
    He, Jingrui
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [27] Byzantine-Robust Federated Learning through Dynamic Clustering
    Wang, Hanyu
    Wang, Liming
    Li, Hongjia
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 222 - 230
  • [28] Byzantine-Robust Federated Learning with Optimal Statistical Rates
    Zhu, Banghua
    Wang, Lun
    Pang, Qi
    Wang, Shuai
    Jiao, Jiantao
    Song, Dawn
    Jordan, Michael I.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [29] FLOD: Oblivious Defender for Private Byzantine-Robust Federated Learning with Dishonest-Majority
    Dong, Ye
    Chen, Xiaojun
    Li, Kaiyun
    Wang, Dakui
    Zeng, Shuai
    COMPUTER SECURITY - ESORICS 2021, PT I, 2021, 12972 : 497 - 518
  • [30] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)