Switching nonparametric regression models for multi-curve data

被引:5
|
作者
De Souza, Camila P. E. [1 ,2 ]
Heckman, Nancy E. [3 ]
Xu, Fan [4 ]
机构
[1] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[2] BC Canc Agcy, Dept Mol Oncol, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[4] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
EM algorithm; functional data analysis; latent variables; machine learning; nonparametric regression; power usage; switching nonparametric regression model; MSC 2010: Primary 62G08; secondary; 62G05; MAXIMUM-LIKELIHOOD; MIXTURES;
D O I
10.1002/cjs.11331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop and apply an approach for analyzing multi-curve data where each curve is driven by a latent state process. The state at any particular point determines a smooth function, forcing the individual curve to switch from one function to another. Thus each curve follows what we call a switching nonparametric regression model. We develop an EM algorithm to estimate the model parameters. We also obtain standard errors for the parameter estimates of the state process. We consider three types of hidden states: those that are independent and identically distributed, those that follow a Markov structure, and those that are independent but with distribution depending on some covariate(s). A simulation study shows the frequentist properties of our estimates. We apply our methods to a building's power usage data. The Canadian Journal of Statistics 45: 442-460; 2017 (c) 2017 Statistical Society of Canada
引用
收藏
页码:442 / 460
页数:19
相关论文
共 50 条
  • [31] Asymptotics of nonparametric L-1 regression models with dependent data
    Zhao, Zhibiao
    Wei, Ying
    Lin, Dennis K. J.
    BERNOULLI, 2014, 20 (03) : 1532 - 1559
  • [33] Nonparametric pathway-based regression models for analysis of genomic data
    Wei, Zhi
    Li, Hongzhe
    BIOSTATISTICS, 2007, 8 (02) : 265 - 284
  • [34] Physics-aware nonparametric regression models for Earth data analysis
    Cortes-Andres, Jordi
    Camps-Valls, Gustau
    Sippel, Sebastian
    Szekely, Eniko
    Sejdinovic, Dino
    Diaz, Emiliano
    Perez-Suay, Adrian
    Li, Zhu
    Mahecha, Miguel
    Reichstein, Markus
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (05)
  • [35] Interval-valued data regression using nonparametric additive models
    Changwon Lim
    Journal of the Korean Statistical Society, 2016, 45 : 358 - 370
  • [36] Nonparametric Regression for Spherical Data
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (506) : 748 - 763
  • [37] Reduced order modeling of an active multi-curve guidewire for endovascular surgery
    Badrou, A.
    Bel-Brunon, A.
    Hamila, N.
    Tardif, N.
    Gravouil, A.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2020, 23 : S23 - S24
  • [38] Simulation of multi-curve active catheterization for endovascular navigation to complex targets
    Badrou, Arif
    Tardif, Nicolas
    Chaudet, Philippe
    Lescanne, Nathan
    Szewczyk, Jerome
    Blanc, Raphael
    Hamila, Nahiene
    Gravouil, Anthony
    Bel-Brunon, Aline
    JOURNAL OF BIOMECHANICS, 2022, 140
  • [39] Nonparametric regression with missing data
    Efromovich, Sam
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (04): : 265 - 275
  • [40] Nonparametric regression for threshold data
    Müller, UU
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (02): : 301 - 310