Switching nonparametric regression models for multi-curve data

被引:5
|
作者
De Souza, Camila P. E. [1 ,2 ]
Heckman, Nancy E. [3 ]
Xu, Fan [4 ]
机构
[1] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[2] BC Canc Agcy, Dept Mol Oncol, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[4] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
EM algorithm; functional data analysis; latent variables; machine learning; nonparametric regression; power usage; switching nonparametric regression model; MSC 2010: Primary 62G08; secondary; 62G05; MAXIMUM-LIKELIHOOD; MIXTURES;
D O I
10.1002/cjs.11331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop and apply an approach for analyzing multi-curve data where each curve is driven by a latent state process. The state at any particular point determines a smooth function, forcing the individual curve to switch from one function to another. Thus each curve follows what we call a switching nonparametric regression model. We develop an EM algorithm to estimate the model parameters. We also obtain standard errors for the parameter estimates of the state process. We consider three types of hidden states: those that are independent and identically distributed, those that follow a Markov structure, and those that are independent but with distribution depending on some covariate(s). A simulation study shows the frequentist properties of our estimates. We apply our methods to a building's power usage data. The Canadian Journal of Statistics 45: 442-460; 2017 (c) 2017 Statistical Society of Canada
引用
收藏
页码:442 / 460
页数:19
相关论文
共 50 条
  • [1] Switching nonparametric regression models
    de Souza, Camila P. E.
    Heckman, Nancy E.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 617 - 637
  • [2] The geometry of multi-curve interest rate models
    Fontana, Claudio
    Lanaro, Giacomo
    Murgoci, Agatha
    QUANTITATIVE FINANCE, 2025, 25 (02) : 323 - 342
  • [3] THE MULTI-CURVE POTENTIAL MODEL
    The Anh Nguyen
    Seifried, Frank Thomas
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (07)
  • [4] RETRACE PREVENTION IN MULTI-CURVE GRAPHS
    MOHILNER, PR
    COMPUTERS & GRAPHICS, 1977, 2 (03) : 163 - 167
  • [5] Rational multi-curve models with counterparty-risk valuation adjustments
    Crepey, Stephane
    Macrina, Andrea
    Tuyet Mai Nguyen
    Skovmand, David
    QUANTITATIVE FINANCE, 2016, 16 (06) : 847 - 866
  • [6] Multi-curve Modelling Using Trees
    Hull, John
    White, Alan
    INNOVATIONS IN DERIVATIVES MARKETS: FIXED INCOME MODELING, VALUATION ADJUSTMENTS, RISK MANAGEMENT, AND REGULATION, 2016, 165 : 171 - 189
  • [7] Capturing eye multi-curve spectrum
    Zeng, Dan
    Cheng, Yi-Min
    Ge, Shi-Ming
    Chen, Zhi-Xiang
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2008, 30 (05): : 1122 - 1126
  • [8] Interest Rate Modelling in the Multi-curve Framework
    Morini, Massimo
    QUANTITATIVE FINANCE, 2016, 16 (02) : 181 - 182
  • [9] Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination
    Ferraty, F
    Vieu, P
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 111 - 125
  • [10] Identifying elephant photos by multi-curve matching
    Ardovini, A.
    Cinque, L.
    Sangineto, E.
    PATTERN RECOGNITION, 2008, 41 (06) : 1867 - 1877