The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity

被引:12
|
作者
Veit-Acosta, Martina [1 ]
de Azevedo Junior, Walter Filgueira [2 ,3 ]
机构
[1] Western Michigan Univ, 1903 Western,Michigan Ave, Kalamazoo, MI 49008 USA
[2] Pontifical Catholic Univ Rio Grande Sul PUCRS, Av Ipiranga,6681, BR-90619900 Porto Alegre, RS, Brazil
[3] Pontifical Catholic Univ Rio Grande Sul PUCRS, Specializat Program Bioinformat, Av Ipiranga,6681, BR-90619900 Porto Alegre, RS, Brazil
关键词
Crystal structures; machine learning; scoring function space; binding affinity; SAnDReS; Taba; MOLECULAR-DYNAMICS SIMULATIONS; NEURAL-NETWORK; CRYO-EM; SCORING FUNCTIONS; CRYSTAL-STRUCTURE; CRYOELECTRON MICROSCOPY; DOCKING SIMULATIONS; STRUCTURAL BASIS; CHEMICAL SPACE; FREE-ENERGY;
D O I
10.2174/0929867328666210210121320
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: One of the main challenges in the early stages of drug discovery is the computational assessment of protein-ligand binding affinity. Machine learning techniques can contribute to predicting this type of interaction. We may apply these techniques following two approaches. Firstly, using the experimental structures for which affinity data is available. Secondly, using protein-ligand docking simulations. Objective: In this review, we describe recently published machine learning models based on crystal structures, for which binding affinity and thermodynamic data are available. Method: We used experimental structures available at the protein data bank and binding affinity and thermodynamic data was accessed through BindingDB, Binding MOAD, and PDBbind databases. We reviewed machine learning models to predict binding created using open source programs, such as SAnDReS and Taba. Results: Analysis of machine learning models trained against datasets, composed of crystal structure complexes indicated the high predictive performance of these models when compared with classical scoring functions. Conclusion: The rapid increase in the number of crystal structures of protein-ligand complexes created a favorable scenario for developing machine learning models to predict binding affinity. These models rely on experimental data from two sources, the structural and the affinity data. The combination of experimental data generates computational models that outperform the classical scoring functions.
引用
收藏
页码:7006 / 7022
页数:17
相关论文
共 50 条
  • [31] Ollivier Persistent Ricci Curvature-Based Machine Learning for the Protein-Ligand Binding Affinity Prediction
    Wee, JunJie
    Xia, Kelin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (04) : 1617 - 1626
  • [32] Predicting protein-ligand binding affinity with gnina
    Francoeur, Paul
    Koes, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [33] Modern machine-learning for binding affinity estimation of protein-ligand complexes: Progress, opportunities, and challenges
    Harren, Tobias
    Gutermuth, Torben
    Grebner, Christoph
    Hessler, Gerhard
    Rarey, Matthias
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2024, 14 (03)
  • [34] 3D-RISM-AI: A Machine Learning Approach to Predict Protein-Ligand Binding Affinity Using 3D-RISM
    Osaki, Kazu
    Ekimoto, Toru
    Yamane, Tsutomu
    Ikeguchi, Mitsunori
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (33): : 6148 - 6158
  • [35] Proteo-chemometrics interaction fingerprints of protein-ligand complexes predict binding affinity
    Wang, Debby D.
    Xie, Haoran
    Yan, Hong
    BIOINFORMATICS, 2021, 37 (17) : 2570 - 2579
  • [36] Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning
    H. Tomas Rube
    Chaitanya Rastogi
    Siqian Feng
    Judith F. Kribelbauer
    Allyson Li
    Basheer Becerra
    Lucas A. N. Melo
    Bach Viet Do
    Xiaoting Li
    Hammaad H. Adam
    Neel H. Shah
    Richard S. Mann
    Harmen J. Bussemaker
    Nature Biotechnology, 2022, 40 : 1520 - 1527
  • [37] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [38] Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction
    Liu, Xiang
    Feng, Huitao
    Wu, Jie
    Xia, Kelin
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [39] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [40] Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods
    Wang, Debby D.
    Le Ou-Yang
    Xie, Haoran
    Zhu, Mengxu
    Hong Yan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 439 - 454