TONE: Adaptive Temperature Optimization for the Next Generation Video Encoders

被引:8
|
作者
Palomino, Daniel [1 ]
Shafique, Muhammad [2 ]
Susin, Altamiro [1 ]
Henkel, Joerg [2 ]
机构
[1] Fed Univ Rio Grande do Sul UFRGS, Informat Inst, PPGC, Porto Alegre, RS, Brazil
[2] Karlsruhe Inst Technol, CES, Karlsruhe, Germany
关键词
Thermal management; HEVC; temperature;
D O I
10.1145/2627369.2627628
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an adaptive temperature optimization technique for the next generation video encoders. It exploits both application specific knowledge (i.e. video encoding configurations) and video content properties in order to efficiently manage the temperature of advanced video coding systems at the software layer. For designing an efficient technique, we perform an extensive offline analysis to understand the impact of different video properties and configurations on the CPU thermal profiles when processing the next generation video encoder. Our temperature optimization technique performs an application-level prediction of the temperature trend followed by an application-level thermal management policy. The policy dynamically manages the temperature by performing an adaptive encoder configuration selection while providing minimum penalties in terms of bit rate and video quality. The experimental results show that our policy meets temperature constraints with negligible encoding performance loss. Moreover, when compared to state-of-the-art techniques, our policy provides a relatively reduced video quality loss while still meeting the temperature constraints.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [41] MediaBench II video: Expediting the next generation of video systems research
    Fritts, Jason E.
    Steiling, Frederick W.
    Tucek, Joseph A.
    Wolf, Wayne
    MICROPROCESSORS AND MICROSYSTEMS, 2009, 33 (04) : 301 - 318
  • [42] Via Optimization for Next Generation Speeds
    Chen, Siang
    Chen, Carol
    Liao, Chun-Lin
    Chen, James
    Wu, Tzong-Lin
    Mutnury, Bhyrav
    2017 IEEE 26TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS), 2017,
  • [43] Autonomous optimization of next generation networks
    Walter, Uwe
    SELF-ORGANIZING SYSTEMS, PROCEEDINGS, 2007, 4725 : 161 - 175
  • [44] The next generation of research in provider optimization
    Greenfield, S
    JOURNAL OF GENERAL INTERNAL MEDICINE, 1999, 14 (08) : 516 - 517
  • [45] MediaBench II Video: Expediting the next generation of video systems research
    Fritts, JE
    Steiling, FW
    Tucek, JA
    Embedded Processors for Multimedia and Communications II, 2005, 5683 : 79 - 93
  • [46] Improved Video Coding Techniques for Next Generation Video Coding Standard
    Xiu, Xiaoyu
    He, Yuwen
    Ye, Yan
    Vanam, Rahul
    Hanhart, Philippe
    Lu, Taoran
    Pu, Fangjun
    Yin, Peng
    Husak, Walt
    Chen, Tao
    2019 DATA COMPRESSION CONFERENCE (DCC), 2019, : 290 - 299
  • [47] Blast furnace optimization, The Next Generation
    Hoerl, J.
    Schaler, M.
    Stohl, K.
    Piirainen, I.
    Ritamaeki, O.
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2007, 104 (05): : 210 - +
  • [48] Cost-adaptive motion estimation strategy for high-performance video encoders
    López, S
    López, JF
    Sarmiento, R
    ELECTRONICS LETTERS, 2005, 41 (04) : 182 - 183
  • [49] QOE-DRIVEN RESOURCE OPTIMIZATION FOR USER GENERATED VIDEO CONTENT IN NEXT GENERATION MOBILE NETWORKS
    El Essaili, Ali
    Steinbach, Eckehard
    Munaretto, Daniele
    Thakolsri, Srisakul
    Kellerer, Wolfgang
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 913 - 916
  • [50] Adaptive individualization: the next generation of online education
    Sonwalkar, Nish
    ON THE HORIZON, 2008, 16 (01) : 44 - +